Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion docs/source/testing.rst
Original file line number Diff line number Diff line change
Expand Up @@ -450,7 +450,8 @@ Inside tests:

.. code-block:: bash

torch.cuda.device_count()
from transformers.testing_utils import get_gpu_count
n_gpu = get_gpu_count() # works with torch and tf



Expand Down
9 changes: 3 additions & 6 deletions examples/seq2seq/test_finetune_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,9 @@
import sys
from unittest.mock import patch

from transformers import BertTokenizer, EncoderDecoderModel, is_torch_available
from transformers import BertTokenizer, EncoderDecoderModel
from transformers.file_utils import is_datasets_available
from transformers.testing_utils import TestCasePlus, execute_subprocess_async, slow
from transformers.testing_utils import TestCasePlus, execute_subprocess_async, get_gpu_count, slow
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed

Expand All @@ -13,9 +13,6 @@
from .test_seq2seq_examples import MBART_TINY


if is_torch_available():
import torch

set_seed(42)
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"

Expand Down Expand Up @@ -196,7 +193,7 @@ def run_trainer(self, eval_steps: int, max_len: str, model_name: str, num_train_
""".split()
# --eval_beams 2

n_gpu = torch.cuda.device_count()
n_gpu = get_gpu_count()
if n_gpu > 1:
distributed_args = f"""
-m torch.distributed.launch
Expand Down
36 changes: 35 additions & 1 deletion examples/seq2seq/test_seq2seq_examples_multi_gpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,14 @@
import os
import sys

from transformers.testing_utils import TestCasePlus, execute_subprocess_async, require_torch_multigpu
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
require_torch_gpu,
require_torch_multigpu,
slow,
)

from .test_seq2seq_examples import CHEAP_ARGS, make_test_data_dir
from .utils import load_json
Expand Down Expand Up @@ -80,3 +87,30 @@ def convert(k, v):
self.assertEqual(len(metrics["test"]), 1)
desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) / 2 + 1)
self.assertEqual(len(metrics["val"]), desired_n_evals)

@slow
@require_torch_gpu
def test_distributed_eval(self):
output_dir = self.get_auto_remove_tmp_dir()
args = f"""
--model_name Helsinki-NLP/opus-mt-en-ro
--save_dir {output_dir}
--data_dir test_data/wmt_en_ro
--num_beams 2
--task translation
""".split()

# we want this test to run even if there is only one GPU, but if there are more we use them all
n_gpu = get_gpu_count()
distributed_args = f"""
-m torch.distributed.launch
--nproc_per_node={n_gpu}
{self.test_file_dir}/run_distributed_eval.py
""".split()
cmd = [sys.executable] + distributed_args + args
execute_subprocess_async(cmd, env=self.get_env())

metrics_save_path = os.path.join(output_dir, "test_bleu.json")
metrics = load_json(metrics_save_path)
# print(metrics)
self.assertGreaterEqual(metrics["bleu"], 25)
16 changes: 16 additions & 0 deletions src/transformers/testing_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -297,6 +297,22 @@ def require_ray(test_case):
return test_case


def get_gpu_count():
"""
Return the number of available gpus (regardless of whether torch or tf is used)
"""
if _torch_available:
import torch

return torch.cuda.device_count()
elif _tf_available:
import tensorflow as tf

return len(tf.config.list_physical_devices("GPU"))
else:
return 0


def get_tests_dir(append_path=None):
"""
Args:
Expand Down