Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions model_cards/gurkan08/bert-turkish-text-classification/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
---
language: tr
---
# Turkish News Text Classification

Turkish text classification model obtained by fine-tuning the Turkish bert model (dbmdz/bert-base-turkish-cased)

# Dataset

Dataset consists of 11 classes were obtained from https://www.trthaber.com/. The model was created using the most distinctive 6 classes.

Dataset can be accessed at https://github.com/gurkan08/datasets/tree/master/trt_11_category.

label_dict = {
'LABEL_0': 'ekonomi',
'LABEL_1': 'spor',
'LABEL_2': 'saglik',
'LABEL_3': 'kultur_sanat',
'LABEL_4': 'bilim_teknoloji',
'LABEL_5': 'egitim'
}

70% of the data were used for training and 30% for testing.

train f1-weighted score = %97

test f1-weighted score = %94

# Usage

from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("gurkan08/bert-turkish-text-classification")
model = AutoModelForSequenceClassification.from_pretrained("gurkan08/bert-turkish-text-classification")

nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)

text = ["Süper Lig'in 6. haftasında Sivasspor ile Çaykur Rizespor karşı karşıya geldi...",
"Son 24 saatte 69 kişi Kovid-19 nedeniyle yaşamını yitirdi, 1573 kişi iyileşti"]

out = nlp(text)

label_dict = {
'LABEL_0': 'ekonomi',
'LABEL_1': 'spor',
'LABEL_2': 'saglik',
'LABEL_3': 'kultur_sanat',
'LABEL_4': 'bilim_teknoloji',
'LABEL_5': 'egitim'
}

results = []
for result in out:
result['label'] = label_dict[result['label']]
results.append(result)
print(results)

# > [{'label': 'spor', 'score': 0.9992026090621948}, {'label': 'saglik', 'score': 0.9972177147865295}]