Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 13 additions & 4 deletions src/transformers/models/whisper/generation_whisper.py
Original file line number Diff line number Diff line change
Expand Up @@ -632,7 +632,9 @@ def generate(
cur_bsz=cur_bsz,
batch_idx_map=batch_idx_map,
)
time_offset = seek.to(torch.float64) * time_precision / input_stride
time_offset = (
seek.to(torch.float32 if device.type == "mps" else torch.float64) * time_precision / input_stride
)
seek_num_frames = (max_frames - seek).clamp(max=num_segment_frames)

# 6.2 cut out next 30s segment from input features
Expand Down Expand Up @@ -1805,6 +1807,7 @@ def _retrieve_segment(
timestamp_segment_indices = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
timestamp_segment_indices.add_(1)
token_timestamps = seek_outputs[idx]["token_timestamps"] if return_token_timestamps else []
device = seek_sequence.device

# If whisper predicted a "end of segment" via a timestep token, let's go ever each
# "end of segment" prediction and slice the decoding into segments accordingly
Expand All @@ -1828,8 +1831,12 @@ def _retrieve_segment(
end_timestamp_pos = sliced_tokens[idx_sliced_tokens] - timestamp_begin
segments.append(
{
"start": time_offset[prev_idx] + start_timestamp_pos.to(torch.float64) * time_precision,
"end": time_offset[prev_idx] + end_timestamp_pos.to(torch.float64) * time_precision,
"start": time_offset[prev_idx]
+ start_timestamp_pos.to(torch.float32 if device.type == "mps" else torch.float64)
* time_precision,
"end": time_offset[prev_idx]
+ end_timestamp_pos.to(torch.float32 if device.type == "mps" else torch.float64)
* time_precision,
"tokens": sliced_tokens,
"result": seek_outputs[idx],
}
Expand All @@ -1856,7 +1863,9 @@ def _retrieve_segment(
last_timestamp_pos = int(seek_num_frames[prev_idx] * time_precision_features / time_precision)
if timestamps.numel() > 0 and timestamps[-1] != timestamp_begin:
# no consecutive timestamps but it has a timestamp; use the last one.
last_timestamp_pos = (timestamps[-1] - timestamp_begin).to(torch.float64)
last_timestamp_pos = (timestamps[-1] - timestamp_begin).to(
torch.float32 if device.type == "mps" else torch.float64
)
segments = [
{
"start": time_offset[prev_idx],
Expand Down