Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
113 changes: 57 additions & 56 deletions src/transformers/models/falcon/convert_custom_code_checkpoint.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,65 +9,66 @@
without needing trust_remote_code=True.
"""

parser = ArgumentParser()
parser.add_argument(
"--checkpoint_dir",
type=Path,
required=True,
help="Directory containing a custom code checkpoint to convert to a modern Falcon checkpoint.",
)
args = parser.parse_args()

if not args.checkpoint_dir.is_dir():
raise ValueError("--checkpoint_dir argument should be a directory!")

if (
not (args.checkpoint_dir / "configuration_RW.py").is_file()
or not (args.checkpoint_dir / "modelling_RW.py").is_file()
):
raise ValueError(
"The model directory should contain configuration_RW.py and modelling_RW.py files! Are you sure this is a custom code checkpoint?"
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"--checkpoint_dir",
type=Path,
required=True,
help="Directory containing a custom code checkpoint to convert to a modern Falcon checkpoint.",
)
(args.checkpoint_dir / "configuration_RW.py").unlink()
(args.checkpoint_dir / "modelling_RW.py").unlink()
args = parser.parse_args()

config = args.checkpoint_dir / "config.json"
text = config.read_text()
text = text.replace("RWForCausalLM", "FalconForCausalLM")
text = text.replace("RefinedWebModel", "falcon")
text = text.replace("RefinedWeb", "falcon")
json_config = json.loads(text)
del json_config["auto_map"]
if not args.checkpoint_dir.is_dir():
raise ValueError("--checkpoint_dir argument should be a directory!")

if "n_head" in json_config:
json_config["num_attention_heads"] = json_config.pop("n_head")
if "n_layer" in json_config:
json_config["num_hidden_layers"] = json_config.pop("n_layer")
if "n_head_kv" in json_config:
json_config["num_kv_heads"] = json_config.pop("n_head_kv")
json_config["new_decoder_architecture"] = True
else:
json_config["new_decoder_architecture"] = False
bos_token_id = json_config.get("bos_token_id", 1)
eos_token_id = json_config.get("eos_token_id", 2)
config.unlink()
config.write_text(json.dumps(json_config, indent=2, sort_keys=True))
if (
not (args.checkpoint_dir / "configuration_RW.py").is_file()
or not (args.checkpoint_dir / "modelling_RW.py").is_file()
):
raise ValueError(
"The model directory should contain configuration_RW.py and modelling_RW.py files! Are you sure this is a custom code checkpoint?"
)
(args.checkpoint_dir / "configuration_RW.py").unlink()
(args.checkpoint_dir / "modelling_RW.py").unlink()

tokenizer_config = args.checkpoint_dir / "tokenizer_config.json"
if tokenizer_config.is_file():
text = tokenizer_config.read_text()
config = args.checkpoint_dir / "config.json"
text = config.read_text()
text = text.replace("RWForCausalLM", "FalconForCausalLM")
text = text.replace("RefinedWebModel", "falcon")
text = text.replace("RefinedWeb", "falcon")
json_config = json.loads(text)
if json_config["tokenizer_class"] == "PreTrainedTokenizerFast":
json_config["model_input_names"] = ["input_ids", "attention_mask"]
tokenizer_config.unlink()
tokenizer_config.write_text(json.dumps(json_config, indent=2, sort_keys=True))
del json_config["auto_map"]

if "n_head" in json_config:
json_config["num_attention_heads"] = json_config.pop("n_head")
if "n_layer" in json_config:
json_config["num_hidden_layers"] = json_config.pop("n_layer")
if "n_head_kv" in json_config:
json_config["num_kv_heads"] = json_config.pop("n_head_kv")
json_config["new_decoder_architecture"] = True
else:
json_config["new_decoder_architecture"] = False
bos_token_id = json_config.get("bos_token_id", 1)
eos_token_id = json_config.get("eos_token_id", 2)
config.unlink()
config.write_text(json.dumps(json_config, indent=2, sort_keys=True))

tokenizer_config = args.checkpoint_dir / "tokenizer_config.json"
if tokenizer_config.is_file():
text = tokenizer_config.read_text()
json_config = json.loads(text)
if json_config["tokenizer_class"] == "PreTrainedTokenizerFast":
json_config["model_input_names"] = ["input_ids", "attention_mask"]
tokenizer_config.unlink()
tokenizer_config.write_text(json.dumps(json_config, indent=2, sort_keys=True))

generation_config_path = args.checkpoint_dir / "generation_config.json"
generation_dict = {
"_from_model_config": True,
"bos_token_id": bos_token_id,
"eos_token_id": eos_token_id,
"transformers_version": "4.33.0.dev0",
}
generation_config_path.write_text(json.dumps(generation_dict, indent=2, sort_keys=True))
print("Done! Please double-check that the new checkpoint works as expected.")
generation_config_path = args.checkpoint_dir / "generation_config.json"
generation_dict = {
"_from_model_config": True,
"bos_token_id": bos_token_id,
"eos_token_id": eos_token_id,
"transformers_version": "4.33.0.dev0",
}
generation_config_path.write_text(json.dumps(generation_dict, indent=2, sort_keys=True))
print("Done! Please double-check that the new checkpoint works as expected.")