Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -737,7 +737,7 @@ def convert_checkpoint_from_transformers_to_megatron(args):
word_emb_dict = get_element_from_dict_by_path(
output_state_dict[i], "model.language_model.embedding.word_embeddings"
)
word_emb_dict["weight"] = out_word_embed[i]
word_emb_dict["weight"] = out_word_embed[i].clone()

# Transformer layers
print("converting transformer layers")
Expand Down Expand Up @@ -845,7 +845,7 @@ def convert_checkpoint_from_transformers_to_megatron(args):
for i in range(args.target_tensor_model_parallel_size):
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
params_dict[layer_name] = (
params[i] if (op_name + "." + weight_or_bias in tensor_parallel_params) else params
params[i].clone() if (op_name + "." + weight_or_bias in tensor_parallel_params) else params
)

if pp_rank == args.target_pipeline_model_parallel_size - 1:
Expand All @@ -860,7 +860,7 @@ def convert_checkpoint_from_transformers_to_megatron(args):
# add the LM head
for i in range(args.target_tensor_model_parallel_size):
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.word_embeddings_for_head")
params_dict["weight"] = out_word_embed[i]
params_dict["weight"] = out_word_embed[i].clone()

# saving the state dict as per the tp_rank and pp_rank
for tp_rank in range(args.target_tensor_model_parallel_size):
Expand Down