Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions src/transformers/modeling_flax_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1124,10 +1124,9 @@ def overwrite_call_docstring(model_class, docstring):
model_class.__call__ = add_start_docstrings_to_model_forward(docstring)(model_class.__call__)


def append_call_sample_docstring(model_class, tokenizer_class, checkpoint, output_type, config_class, mask=None):
def append_call_sample_docstring(model_class, checkpoint, output_type, config_class, mask=None):
model_class.__call__ = copy_func(model_class.__call__)
model_class.__call__ = add_code_sample_docstrings(
processor_class=tokenizer_class,
checkpoint=checkpoint,
output_type=output_type,
config_class=config_class,
Expand Down
23 changes: 6 additions & 17 deletions src/transformers/models/albert/modeling_albert.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,6 @@

_CHECKPOINT_FOR_DOC = "albert-base-v2"
_CONFIG_FOR_DOC = "AlbertConfig"
_TOKENIZER_FOR_DOC = "AlbertTokenizer"


ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
Expand Down Expand Up @@ -582,7 +581,7 @@ class AlbertForPreTrainingOutput(ModelOutput):
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.

Indices can be obtained using [`AlbertTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.

[What are input IDs?](../glossary#input-ids)
Expand Down Expand Up @@ -677,7 +676,6 @@ def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:

@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
Expand Down Expand Up @@ -818,10 +816,10 @@ def forward(
Example:

```python
>>> from transformers import AlbertTokenizer, AlbertForPreTraining
>>> from transformers import AutoTokenizer, AlbertForPreTraining
>>> import torch

>>> tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = AlbertForPreTraining.from_pretrained("albert-base-v2")

>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)
Expand Down Expand Up @@ -967,9 +965,9 @@ def forward(

```python
>>> import torch
>>> from transformers import AlbertTokenizer, AlbertForMaskedLM
>>> from transformers import AutoTokenizer, AlbertForMaskedLM

>>> tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = AlbertForMaskedLM.from_pretrained("albert-base-v2")

>>> # add mask_token
Expand Down Expand Up @@ -1048,7 +1046,6 @@ def __init__(self, config: AlbertConfig):

@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint="textattack/albert-base-v2-imdb",
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
Expand Down Expand Up @@ -1157,15 +1154,9 @@ def __init__(self, config: AlbertConfig):

@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint="vumichien/tiny-albert",
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=(
"['LABEL_1', 'LABEL_1', 'LABEL_1', 'LABEL_0', 'LABEL_1', 'LABEL_0', 'LABEL_1', 'LABEL_1', "
"'LABEL_0', 'LABEL_1', 'LABEL_0', 'LABEL_0', 'LABEL_1', 'LABEL_1']"
),
expected_loss=0.66,
)
def forward(
self,
Expand Down Expand Up @@ -1243,7 +1234,6 @@ def __init__(self, config: AlbertConfig):

@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint="twmkn9/albert-base-v2-squad2",
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
Expand Down Expand Up @@ -1347,7 +1337,6 @@ def __init__(self, config: AlbertConfig):

@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
Expand Down
19 changes: 5 additions & 14 deletions src/transformers/models/albert/modeling_flax_albert.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,6 @@

_CHECKPOINT_FOR_DOC = "albert-base-v2"
_CONFIG_FOR_DOC = "AlbertConfig"
_TOKENIZER_FOR_DOC = "AlbertTokenizer"


@flax.struct.dataclass
Expand Down Expand Up @@ -122,7 +121,7 @@ class FlaxAlbertForPreTrainingOutput(ModelOutput):
input_ids (`numpy.ndarray` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.

Indices can be obtained using [`AlbertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.

[What are input IDs?](../glossary#input-ids)
Expand Down Expand Up @@ -680,9 +679,7 @@ class FlaxAlbertModel(FlaxAlbertPreTrainedModel):
module_class = FlaxAlbertModule


append_call_sample_docstring(
FlaxAlbertModel, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC
)
append_call_sample_docstring(FlaxAlbertModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC)


class FlaxAlbertForPreTrainingModule(nn.Module):
Expand Down Expand Up @@ -757,9 +754,9 @@ class FlaxAlbertForPreTraining(FlaxAlbertPreTrainedModel):
Example:

```python
>>> from transformers import AlbertTokenizer, FlaxAlbertForPreTraining
>>> from transformers import AutoTokenizer, FlaxAlbertForPreTraining

>>> tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = FlaxAlbertForPreTraining.from_pretrained("albert-base-v2")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
Expand Down Expand Up @@ -834,9 +831,7 @@ class FlaxAlbertForMaskedLM(FlaxAlbertPreTrainedModel):
module_class = FlaxAlbertForMaskedLMModule


append_call_sample_docstring(
FlaxAlbertForMaskedLM, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC
)
append_call_sample_docstring(FlaxAlbertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)


class FlaxAlbertForSequenceClassificationModule(nn.Module):
Expand Down Expand Up @@ -906,7 +901,6 @@ class FlaxAlbertForSequenceClassification(FlaxAlbertPreTrainedModel):

append_call_sample_docstring(
FlaxAlbertForSequenceClassification,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxSequenceClassifierOutput,
_CONFIG_FOR_DOC,
Expand Down Expand Up @@ -983,7 +977,6 @@ class FlaxAlbertForMultipleChoice(FlaxAlbertPreTrainedModel):
)
append_call_sample_docstring(
FlaxAlbertForMultipleChoice,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxMultipleChoiceModelOutput,
_CONFIG_FOR_DOC,
Expand Down Expand Up @@ -1054,7 +1047,6 @@ class FlaxAlbertForTokenClassification(FlaxAlbertPreTrainedModel):

append_call_sample_docstring(
FlaxAlbertForTokenClassification,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxTokenClassifierOutput,
_CONFIG_FOR_DOC,
Expand Down Expand Up @@ -1123,7 +1115,6 @@ class FlaxAlbertForQuestionAnswering(FlaxAlbertPreTrainedModel):

append_call_sample_docstring(
FlaxAlbertForQuestionAnswering,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
Expand Down
23 changes: 6 additions & 17 deletions src/transformers/models/albert/modeling_tf_albert.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,6 @@

_CHECKPOINT_FOR_DOC = "albert-base-v2"
_CONFIG_FOR_DOC = "AlbertConfig"
_TOKENIZER_FOR_DOC = "AlbertTokenizer"

TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"albert-base-v1",
Expand Down Expand Up @@ -738,7 +737,7 @@ class TFAlbertForPreTrainingOutput(ModelOutput):
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.

Indices can be obtained using [`AlbertTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.

[What are input IDs?](../glossary#input-ids)
Expand Down Expand Up @@ -802,7 +801,6 @@ def __init__(self, config: AlbertConfig, *inputs, **kwargs):
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
Expand Down Expand Up @@ -895,9 +893,9 @@ def call(

```python
>>> import tensorflow as tf
>>> from transformers import AlbertTokenizer, TFAlbertForPreTraining
>>> from transformers import AutoTokenizer, TFAlbertForPreTraining

>>> tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = TFAlbertForPreTraining.from_pretrained("albert-base-v2")

>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :]
Expand Down Expand Up @@ -1015,9 +1013,9 @@ def call(

```python
>>> import tensorflow as tf
>>> from transformers import AlbertTokenizer, TFAlbertForMaskedLM
>>> from transformers import AutoTokenizer, TFAlbertForMaskedLM

>>> tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = TFAlbertForMaskedLM.from_pretrained("albert-base-v2")

>>> # add mask_token
Expand Down Expand Up @@ -1101,7 +1099,6 @@ def __init__(self, config: AlbertConfig, *inputs, **kwargs):
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint="vumichien/albert-base-v2-imdb",
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
Expand Down Expand Up @@ -1196,15 +1193,9 @@ def __init__(self, config: AlbertConfig, *inputs, **kwargs):
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint="vumichien/tiny-albert",
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=(
"['LABEL_1', 'LABEL_1', 'LABEL_1', 'LABEL_0', 'LABEL_1', 'LABEL_0', 'LABEL_1', 'LABEL_1', "
"'LABEL_0', 'LABEL_1', 'LABEL_0', 'LABEL_0', 'LABEL_1', 'LABEL_1']"
),
expected_loss=0.66,
)
def call(
self,
Expand Down Expand Up @@ -1285,7 +1276,6 @@ def __init__(self, config: AlbertConfig, *inputs, **kwargs):
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint="vumichien/albert-base-v2-squad2",
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
Expand Down Expand Up @@ -1400,7 +1390,6 @@ def dummy_inputs(self):
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
Expand Down
29 changes: 14 additions & 15 deletions src/transformers/models/altclip/modeling_altclip.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@

logger = logging.get_logger(__name__)

_TOKENIZER_FOR_DOC = "XLMRobertaTokenizer"
_CHECKPOINT_FOR_DOC = "BAAI/AltCLIP"
_CONFIG_FOR_DOC = "AltCLIPConfig"

Expand Down Expand Up @@ -68,7 +67,7 @@
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.

Indices can be obtained using [`XLMRobertaTokenizerFast`]. See [`PreTrainedTokenizer.encode`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.

[What are input IDs?](../glossary#input-ids)
Expand Down Expand Up @@ -98,7 +97,7 @@
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`CLIPImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
Expand All @@ -115,7 +114,7 @@
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.

Indices can be obtained using [`XLMRobertaTokenizerFast`]. See [`PreTrainedTokenizer.encode`] and
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.

[What are input IDs?](../glossary#input-ids)
Expand All @@ -133,7 +132,7 @@
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`CLIPImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Expand Down Expand Up @@ -1181,10 +1180,10 @@ def forward(
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AltCLIPProcessor, AltCLIPVisionModel
>>> from transformers import AutoProcessor, AltCLIPVisionModel

>>> model = AltCLIPVisionModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
Expand Down Expand Up @@ -1422,10 +1421,10 @@ def forward(
Examples:

```python
>>> from transformers import AltCLIPProcessor, AltCLIPTextModel
>>> from transformers import AutoProcessor, AltCLIPTextModel

>>> model = AltCLIPTextModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")

>>> texts = ["it's a cat", "it's a dog"]

Expand Down Expand Up @@ -1526,10 +1525,10 @@ def get_text_features(
Examples:

```python
>>> from transformers import AltCLIPProcessor, AltCLIPModel
>>> from transformers import AutoProcessor, AltCLIPModel

>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
Expand Down Expand Up @@ -1572,10 +1571,10 @@ def get_image_features(
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AltCLIPProcessor, AltCLIPModel
>>> from transformers import AutoProcessor, AltCLIPModel

>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
Expand Down Expand Up @@ -1622,10 +1621,10 @@ def forward(
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AltCLIPProcessor, AltCLIPModel
>>> from transformers import AutoProcessor, AltCLIPModel

>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
Expand Down
Loading