Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -1042,12 +1042,12 @@ def _reorder_cache(self, past, beam_idx):
@add_start_docstrings(
"""RoBERTa-PreLayerNorm Model with a `language modeling` head on top.""", ROBERTA_PRELAYERNORM_START_DOCSTRING
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm
class RobertaPreLayerNormForMaskedLM(RobertaPreLayerNormPreTrainedModel):
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_unexpected = [r"pooler"]

# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.__init__ with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm
def __init__(self, config):
super().__init__(config)

Expand Down Expand Up @@ -1078,10 +1078,8 @@ def set_output_embeddings(self, new_embeddings):
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
expected_output="' Paris'",
expected_loss=0.1,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.forward with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
Expand Down Expand Up @@ -1199,8 +1197,6 @@ def __init__(self, config):
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'optimism'",
expected_loss=0.08,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.forward with roberta->roberta_prelayernorm
def forward(
Expand Down Expand Up @@ -1400,8 +1396,6 @@ def __init__(self, config):
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
expected_loss=0.01,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.forward with roberta->roberta_prelayernorm
def forward(
Expand Down Expand Up @@ -1507,8 +1501,6 @@ def __init__(self, config):
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="' puppet'",
expected_loss=0.86,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.forward with roberta->roberta_prelayernorm
def forward(
Expand Down