Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
187 changes: 187 additions & 0 deletions src/transformers/models/whisper/convert_openai_to_hf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
# Copyright 2022 The HuggingFace Inc. team and the OpenAI team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import hashlib
import os
import urllib
import warnings

import torch
from torch import nn
from tqdm import tqdm

from transformers import WhisperConfig, WhisperForConditionalGeneration


_MODELS = {
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt",
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt",
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt",
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt",
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
"large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt",
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
}


def remove_ignore_keys_(state_dict):
ignore_keys = ["layers", "blocks"]
for k in ignore_keys:
state_dict.pop(k, None)


WHISPER_MAPPING = {
"blocks": "layers",
"mlp.0": "fc1",
"mlp.2": "fc2",
"mlp_ln": "final_layer_norm",
"blocks": "layers",
".attn.query": ".self_attn.q_proj",
".attn.key": ".self_attn.k_proj",
".attn.value": ".self_attn.v_proj",
".attn_ln": ".self_attn_layer_norm",
".attn.out": ".self_attn.out_proj",
".cross_attn.query": ".encoder_attn.q_proj",
".cross_attn.key": ".encoder_attn.k_proj",
".cross_attn.value": ".encoder_attn.v_proj",
".cross_attn_ln": ".encoder_attn_layer_norm",
".cross_attn.out": ".encoder_attn.out_proj",
"decoder.ln.": "decoder.layer_norm.",
"encoder.ln.": "encoder.layer_norm.",
"token_embedding": "embed_tokens",
"encoder.positional_embedding": "encoder.embed_positions.weight",
"decoder.positional_embedding": "decoder.embed_positions.weight",
"ln_post": "layer_norm",
}


def rename_keys(s_dict):
keys = list(s_dict.keys())
for key in keys:
new_key = key
for k, v in WHISPER_MAPPING.items():
if k in key:
new_key = new_key.replace(k, v)

print(f"{key} -> {new_key}")

s_dict[new_key] = s_dict.pop(key)
return s_dict


def make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer


def _download(url: str, root: str) -> bytes:
os.makedirs(root, exist_ok=True)
filename = os.path.basename(url)

expected_sha256 = url.split("/")[-2]
download_target = os.path.join(root, filename)

if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")

if os.path.isfile(download_target):
model_bytes = open(download_target, "rb").read()
if hashlib.sha256(model_bytes).hexdigest() == expected_sha256:
return model_bytes
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")

with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(
total=int(source.info().get("Content-Length")), ncols=80, unit="iB", unit_scale=True, unit_divisor=1024
) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break

output.write(buffer)
loop.update(len(buffer))

model_bytes = open(download_target, "rb").read()
if hashlib.sha256(model_bytes).hexdigest() != expected_sha256:
raise RuntimeError(
"Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model."
)

return model_bytes


def convert_openai_whisper_to_tfms(checkpoint_path, pytorch_dump_folder_path):
if ".pt" not in checkpoint_path:
original_checkpoint = _download(_MODELS[checkpoint_path])
else:
original_checkpoint = torch.load(checkpoint_path, map_location="cpu")
dimensions = original_checkpoint["dims"]
state_dict = original_checkpoint["model_state_dict"]
proj_out_weights = state_dict["decoder.token_embedding.weight"]
remove_ignore_keys_(state_dict)
rename_keys(state_dict)
tie_embeds = True
ffn_dim = state_dict["decoder.layers.0.fc1.weight"].shape[0]

config = WhisperConfig(
vocab_size=dimensions["n_vocab"],
encoder_ffn_dim=ffn_dim,
decoder_ffn_dim=ffn_dim,
num_mel_bins=dimensions["n_mels"],
d_model=dimensions["n_audio_state"],
max_target_positions=dimensions["n_text_ctx"],
encoder_layers=dimensions["n_audio_layer"],
encoder_attention_heads=dimensions["n_audio_head"],
decoder_layers=dimensions["n_text_layer"],
decoder_attention_heads=dimensions["n_text_state"],
max_source_positions=dimensions["n_audio_ctx"],
)

model = WhisperForConditionalGeneration(config)
missing, unexpected = model.model.load_state_dict(state_dict, strict=False)
if len(missing) > 0 and not set(missing) <= set(
[
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
]
):
raise ValueError(
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"
f" but all the following weights are missing {missing}"
)

if tie_embeds:
model.proj_out = make_linear_from_emb(model.model.decoder.embed_tokens)
else:
model.proj_out.weight.data = proj_out_weights

model.save_pretrained(pytorch_dump_folder_path)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
# # Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
args = parser.parse_args()

convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)