Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 14 additions & 5 deletions src/transformers/models/longt5/modeling_longt5.py
Original file line number Diff line number Diff line change
Expand Up @@ -648,9 +648,12 @@ def _relative_position_bucket(relative_position, bidirectional=True, num_buckets

def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = torch.arange(
3 * block_length, dtype=torch.long, device=self.relative_attention_bias.weight.device
target_device = (
self.relative_attention_bias.weight.device
if self.relative_attention_bias.weight.device.type != "meta"
else None
)
memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device)
context_position = memory_position[block_length:-block_length]

# (block_length, 3 * block_length)
Expand Down Expand Up @@ -843,9 +846,12 @@ def _relative_position_bucket(relative_position, bidirectional=True, num_buckets

def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = torch.arange(
3 * block_length, dtype=torch.long, device=self.relative_attention_bias.weight.device
target_device = (
self.relative_attention_bias.weight.device
if self.relative_attention_bias.weight.device.type != "meta"
else None
)
memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device)
context_position = memory_position[block_length:-block_length]

# (block_length, 3 * block_length)
Expand Down Expand Up @@ -1271,6 +1277,7 @@ class LongT5PreTrainedModel(PreTrainedModel):
config_class = LongT5Config
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["LongT5Block"]

@property
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel.dummy_inputs
Expand Down Expand Up @@ -1366,7 +1373,9 @@ class LongT5Stack(LongT5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)

self.embed_tokens = embed_tokens
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.is_decoder = config.is_decoder

self.local_radius = config.local_radius
Expand Down