Skip to content
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions src/transformers/pipelines/token_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,34 @@ class TokenClassificationPipeline(Pipeline):
Named Entity Recognition pipeline using any `ModelForTokenClassification`. See the [named entity recognition
examples](../task_summary#named-entity-recognition) for more information.

Example:

```python
>>> from transformers import pipeline

>>> token_classifier = pipeline(model="Jean-Baptiste/camembert-ner", aggregation_strategy="simple")
>>> sentence = "Je m'appelle jean-baptiste et je vis à montréal"
>>> tokens = token_classifier(sentence)
>>> from transformers.testing_utils import (
... nested_simplify,
... ) # Score might vary slightly based on PyTorch/Tensorflow versions

>>> nested_simplify(tokens)
[{'entity_group': 'PER', 'score': 0.9931, 'word': 'jean-baptiste', 'start': 12, 'end': 26}, {'entity_group': 'LOC', 'score': 0.998, 'word': 'montréal', 'start': 38, 'end': 47}]

>>> token = tokens[0]
>>> # Start and end provide an easy way to highlight words in the original text.
>>> sentence[token["start"] : token["end"]]
' jean-baptiste'

>>> # Some models use the same idea to do part of speech.
>>> syntaxer = pipeline(model="vblagoje/bert-english-uncased-finetuned-pos", aggregation_strategy="simple")
>>> nested_simplify(syntaxer("My name is Sarah and I live in London"))
[{'entity_group': 'PRON', 'score': 0.999, 'word': 'my', 'start': 0, 'end': 2}, {'entity_group': 'NOUN', 'score': 0.997, 'word': 'name', 'start': 3, 'end': 7}, {'entity_group': 'AUX', 'score': 0.994, 'word': 'is', 'start': 8, 'end': 10}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'sarah', 'start': 11, 'end': 16}, {'entity_group': 'CCONJ', 'score': 0.999, 'word': 'and', 'start': 17, 'end': 20}, {'entity_group': 'PRON', 'score': 0.999, 'word': 'i', 'start': 21, 'end': 22}, {'entity_group': 'VERB', 'score': 0.998, 'word': 'live', 'start': 23, 'end': 27}, {'entity_group': 'ADP', 'score': 0.999, 'word': 'in', 'start': 28, 'end': 30}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'london', 'start': 31, 'end': 37}]
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Flaggind the use of nested_simplify here too!

```

[Learn more about the basics of using a pipeline in the [pipeline tutorial]](../pipeline_tutorial)

This token recognition pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous).

Expand Down