Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/transformers/models/flava/modeling_flava.py
Original file line number Diff line number Diff line change
Expand Up @@ -1795,7 +1795,7 @@ def forward(
output_hidden_states: bool = True,
return_dict: Optional[bool] = None,
return_loss: Optional[bool] = None,
):
) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]:
"""
Examples:
```python
Expand Down
12 changes: 6 additions & 6 deletions src/transformers/models/glpn/modeling_glpn.py
Original file line number Diff line number Diff line change
Expand Up @@ -698,12 +698,12 @@ def __init__(self, config):
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
pixel_values: torch.FloatTensor,
labels: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
r"""
labels (`torch.FloatTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth depth estimation maps for computing the loss.
Expand Down
14 changes: 10 additions & 4 deletions src/transformers/models/jukebox/modeling_jukebox.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

import math
import os
from typing import List
from typing import List, Optional, Tuple

import numpy as np
import torch
Expand Down Expand Up @@ -737,7 +737,7 @@ def sample(self, n_samples):
]
return self.decode(music_tokens)

def forward(self, raw_audio):
def forward(self, raw_audio: torch.FloatTensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass of the VQ-VAE, encodes the `raw_audio` to latent states, which are then decoded for each level.
The commit loss, which ensure that the encoder's computed embeddings are close to the codebook vectors, is
Expand All @@ -748,7 +748,7 @@ def forward(self, raw_audio):
Audio input which will be encoded and decoded.

Returns:
`Tuple[torch.Tensor, torch.Tensor`
`Tuple[torch.Tensor, torch.Tensor]`


Example:
Expand Down Expand Up @@ -2228,7 +2228,13 @@ def forward_tokens(
else:
return loss, metrics

def forward(self, hidden_states, metadata=None, decode=False, get_preds=False):
def forward(
self,
hidden_states: torch.Tensor,
metadata: Optional[List[torch.LongTensor]],
decode: Optional[bool] = False,
get_preds: Optional[bool] = False,
) -> List[torch.Tensor]:
"""
Encode the hidden states using the `vqvae` encoder, and then predicts the next token in the `forward_tokens`
function. The loss is the sum of the `encoder` loss and the `decoder` loss.
Expand Down
24 changes: 12 additions & 12 deletions src/transformers/models/markuplm/modeling_markuplm.py
Original file line number Diff line number Diff line change
Expand Up @@ -829,18 +829,18 @@ class PreTrainedModel
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
xpath_tags_seq=None,
xpath_subs_seq=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
xpath_tags_seq: Optional[torch.LongTensor] = None,
xpath_subs_seq: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
Returns:

Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/roc_bert/modeling_roc_bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1793,7 +1793,7 @@ def forward(
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/segformer/modeling_segformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -706,7 +706,7 @@ def __init__(self, config):

self.config = config

def forward(self, encoder_hidden_states: torch.FloatTensor):
def forward(self, encoder_hidden_states: torch.FloatTensor) -> torch.Tensor:
batch_size = encoder_hidden_states[-1].shape[0]

all_hidden_states = ()
Expand Down
106 changes: 53 additions & 53 deletions src/transformers/models/tapas/modeling_tapas.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
Expand Down Expand Up @@ -878,18 +878,18 @@ class PreTrainedModel
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:

Expand Down Expand Up @@ -1013,20 +1013,20 @@ def set_output_embeddings(self, new_embeddings):
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs
):
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
Expand Down Expand Up @@ -1144,22 +1144,22 @@ def __init__(self, config: TapasConfig):
@replace_return_docstrings(output_type=TableQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
table_mask=None,
labels=None,
aggregation_labels=None,
float_answer=None,
numeric_values=None,
numeric_values_scale=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
table_mask: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
aggregation_labels: Optional[torch.LongTensor] = None,
float_answer: Optional[torch.FloatTensor] = None,
numeric_values: Optional[torch.FloatTensor] = None,
numeric_values_scale: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TableQuestionAnsweringOutput]:
r"""
table_mask (`torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*):
Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and
Expand Down Expand Up @@ -1466,17 +1466,17 @@ def __init__(self, config):
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Expand Down
30 changes: 15 additions & 15 deletions src/transformers/models/trocr/modeling_trocr.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
import copy
import math
import random
from typing import Optional, Tuple
from typing import Optional, Tuple, Union

import torch
from torch import nn
Expand Down Expand Up @@ -820,20 +820,20 @@ def get_decoder(self):
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Expand Down
30 changes: 15 additions & 15 deletions src/transformers/models/videomae/modeling_videomae.py
Original file line number Diff line number Diff line change
Expand Up @@ -565,13 +565,13 @@ class PreTrainedModel
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values,
bool_masked_pos=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
pixel_values: torch.FloatTensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Returns:

Expand Down Expand Up @@ -753,13 +753,13 @@ def __init__(self, config):
@replace_return_docstrings(output_type=VideoMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values,
bool_masked_pos,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
pixel_values: torch.FloatTensor,
bool_masked_pos: torch.BoolTensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, VideoMAEForPreTrainingOutput]:
r"""
Returns:

Expand Down Expand Up @@ -926,7 +926,7 @@ def forward(
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
Expand Down
14 changes: 7 additions & 7 deletions src/transformers/models/wav2vec2/modeling_wav2vec2.py
Original file line number Diff line number Diff line change
Expand Up @@ -1574,13 +1574,13 @@ def __init__(self, config):
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
def forward(
self,
input_values,
attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
):
input_values: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, MaskedLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

outputs = self.wav2vec2(
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/models/yolos/modeling_yolos.py
Original file line number Diff line number Diff line change
Expand Up @@ -641,7 +641,7 @@ def forward(
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
Expand Down