Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 12 additions & 7 deletions src/transformers/models/bart/modeling_bart.py
Original file line number Diff line number Diff line change
Expand Up @@ -500,6 +500,7 @@ class BartPretrainedModel(PreTrainedModel):
base_model_prefix = "model"
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_unexpected = [r"encoder.version", r"decoder.version"]
_no_split_modules = [r"BartEncoderLayer", r"BartDecoderLayer"]

def _init_weights(self, module):
std = self.config.init_std
Expand Down Expand Up @@ -712,10 +713,10 @@ def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = No
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight

self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
Expand Down Expand Up @@ -801,6 +802,7 @@ def forward(
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

embed_pos = self.embed_positions(input)
embed_pos = embed_pos.to(inputs_embeds.device)

hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
Expand Down Expand Up @@ -884,10 +886,10 @@ def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = No
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight

self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
Expand Down Expand Up @@ -1043,6 +1045,7 @@ def forward(

# embed positions
positions = self.embed_positions(input, past_key_values_length)
positions = positions.to(inputs_embeds.device)

hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
Expand Down Expand Up @@ -1373,7 +1376,9 @@ def forward(
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias

lm_logits = self.lm_head(outputs[0])
lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)

masked_lm_loss = None
if labels is not None:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1595,6 +1595,7 @@ class BigBirdPegasusPreTrainedModel(PreTrainedModel):
config_class = BigBirdPegasusConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["BigBirdPegasusEncoderLayer", "BigBirdPegasusDecoderLayer"]

def _init_weights(self, module):
std = self.config.init_std
Expand Down Expand Up @@ -1788,10 +1789,10 @@ def __init__(self, config: BigBirdPegasusConfig, embed_tokens: Optional[nn.Embed
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight

self.embed_positions = BigBirdPegasusLearnedPositionalEmbedding(
config.max_position_embeddings,
Expand Down Expand Up @@ -2082,10 +2083,10 @@ def __init__(self, config: BigBirdPegasusConfig, embed_tokens: Optional[nn.Embed
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight

self.embed_positions = BigBirdPegasusLearnedPositionalEmbedding(
config.max_position_embeddings,
Expand Down Expand Up @@ -2240,6 +2241,7 @@ def forward(

# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
positions = positions.to(inputs_embeds.device)

hidden_states = inputs_embeds + positions

Expand Down Expand Up @@ -2573,7 +2575,9 @@ def forward(
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias

lm_logits = self.lm_head(outputs[0])
lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)

masked_lm_loss = None
if labels is not None:
Expand Down
18 changes: 11 additions & 7 deletions src/transformers/models/plbart/modeling_plbart.py
Original file line number Diff line number Diff line change
Expand Up @@ -506,6 +506,7 @@ class PLBartPreTrainedModel(PreTrainedModel):
config_class = PLBartConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["PLBartDecoderLayer", "PLBartEncoderLayer"]

def _init_weights(self, module):
std = self.config.init_std
Expand Down Expand Up @@ -683,10 +684,10 @@ def __init__(self, config: PLBartConfig, embed_tokens: Optional[nn.Embedding] =
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight

self.embed_positions = PLBartLearnedPositionalEmbedding(
config.max_position_embeddings,
Expand Down Expand Up @@ -772,6 +773,7 @@ def forward(
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

embed_pos = self.embed_positions(input)
embed_pos = embed_pos.to(inputs_embeds.device)

hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
Expand Down Expand Up @@ -856,10 +858,10 @@ def __init__(self, config: PLBartConfig, embed_tokens: Optional[nn.Embedding] =
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight

self.embed_positions = PLBartLearnedPositionalEmbedding(
config.max_position_embeddings,
Expand Down Expand Up @@ -1015,6 +1017,7 @@ def forward(

# embed positions
positions = self.embed_positions(input, past_key_values_length)
positions = positions.to(inputs_embeds.device)

hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
Expand Down Expand Up @@ -1334,7 +1337,8 @@ def forward(
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
lm_logits = self.lm_head(outputs[0])
lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)

masked_lm_loss = None
if labels is not None:
Expand Down