Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 9 additions & 6 deletions src/transformers/models/m2m_100/modeling_m2m_100.py
Original file line number Diff line number Diff line change
Expand Up @@ -532,6 +532,7 @@ class M2M100PreTrainedModel(PreTrainedModel):
config_class = M2M100Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["M2M100Attention"]

def _init_weights(self, module):
std = self.config.init_std
Expand Down Expand Up @@ -693,10 +694,10 @@ def __init__(self, config: M2M100Config, embed_tokens: Optional[nn.Embedding] =
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight

self.embed_positions = M2M100SinusoidalPositionalEmbedding(
config.max_position_embeddings,
Expand Down Expand Up @@ -777,6 +778,7 @@ def forward(
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale

embed_pos = self.embed_positions(input_ids, inputs_embeds)
embed_pos = embed_pos.to(inputs_embeds.device)

hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
Expand Down Expand Up @@ -868,10 +870,10 @@ def __init__(self, config: M2M100Config, embed_tokens: Optional[nn.Embedding] =
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)

if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight

self.embed_positions = M2M100SinusoidalPositionalEmbedding(
config.max_position_embeddings,
Expand Down Expand Up @@ -1010,6 +1012,7 @@ def forward(

# embed positions
positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
positions = positions.to(inputs_embeds.device)

hidden_states = inputs_embeds + positions

Expand Down