Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 7 additions & 15 deletions src/transformers/models/gpt_neox/configuration_gpt_neox.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,32 +38,28 @@ class GPTNeoXConfig(PretrainedConfig):


Args:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for cleaning this up!

vocab_size (`int`, *optional*, defaults to 30522):
vocab_size (`int`, *optional*, defaults to 50432):
Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTNeoXModel`].
hidden_size (`int`, *optional*, defaults to 768):
hidden_size (`int`, *optional*, defaults to 6144):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
num_hidden_layers (`int`, *optional*, defaults to 44):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
rotary_pct (`float`, *optional*, defaults to 0.25):
percentage of hidden dimensions to allocate to rotary embeddings
rotary_emb_base (`int`, *optional*, defaults to 10000)
base for computing rotary embeddings frequency
max_position_embeddings (`int`, *optional*, defaults to 512):
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
initializer_range (`float`, *optional*, defaults to 1e-5):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
Expand Down Expand Up @@ -94,8 +90,6 @@ def __init__(
num_attention_heads=64,
intermediate_size=24576,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
rotary_pct=0.25,
rotary_emb_base=10000,
max_position_embeddings=2048,
Expand All @@ -115,8 +109,6 @@ def __init__(
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.rotary_pct = rotary_pct
self.rotary_emb_base = rotary_emb_base
self.initializer_range = initializer_range
Expand Down
17 changes: 15 additions & 2 deletions src/transformers/models/gpt_neox/modeling_gpt_neox.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,7 +195,20 @@ def _attn(self, query, key, value, attention_mask=None, head_mask=None):

query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
attn_scores = torch.einsum("bik,bjk->bij", query, key) / self.norm_factor
attn_scores = torch.zeros(
batch_size * num_attention_heads,
query_length,
key_length,
dtype=query.dtype,
device=key.device,
)
attn_scores = torch.baddbmm(
attn_scores,
query,
key.transpose(1, 2),
beta=1.0,
alpha=(1.0 / self.norm_factor),
)
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)

mask_value = torch.finfo(attn_scores.dtype).min
Expand Down Expand Up @@ -637,7 +650,7 @@ def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=Non
attention_mask = input_ids.new_ones(input_shape)

# cut decoder_input_ids if past is used
if past is not None:
if past and past[0] is not None:
input_ids = input_ids[:, -1:]

return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past}
Expand Down
6 changes: 5 additions & 1 deletion tests/models/gpt_neox/test_modeling_gpt_neox.py
Original file line number Diff line number Diff line change
Expand Up @@ -226,6 +226,10 @@ def test_model_for_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)

@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass

@slow
def test_model_from_pretrained(self):
for model_name in GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
Expand All @@ -247,7 +251,7 @@ def test_inference_masked_lm(self):
self.assertEqual(output.shape, expected_shape)

expected_slice = torch.tensor(
[[[33.8045, 2.3958, 34.2816], [63.7805, 4.8332, 63.5882], [66.9116, 5.2198, 63.1185]]]
[[[33.5938, 2.3789, 34.0312], [63.4688, 4.8164, 63.3438], [66.8750, 5.2422, 63.0625]]]
)

self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))