Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 27 additions & 48 deletions src/transformers/models/vit/modeling_tf_vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,14 +33,23 @@
unpack_inputs,
)
from ...tf_utils import shape_list
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_vit import ViTConfig


logger = logging.get_logger(__name__)

# General docstring
_CONFIG_FOR_DOC = "ViTConfig"
_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224"
_FEAT_EXTRACTOR_FOR_DOC = "ViTFeatureExtractor"

# Base docstring
_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"


# Inspired by
Expand Down Expand Up @@ -645,7 +654,14 @@ def __init__(self, config: ViTConfig, *inputs, add_pooling_layer=True, **kwargs)

@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: Optional[TFModelInputType] = None,
Expand All @@ -656,26 +672,6 @@ def call(
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:

Examples:

```python
>>> from transformers import ViTFeatureExtractor, TFViTModel
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
>>> model = TFViTModel.from_pretrained("google/vit-base-patch16-224-in21k")

>>> inputs = feature_extractor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```"""

outputs = self.vit(
pixel_values=pixel_values,
Expand Down Expand Up @@ -744,7 +740,13 @@ def __init__(self, config: ViTConfig, *inputs, **kwargs):

@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: Optional[TFModelInputType] = None,
Expand All @@ -761,30 +763,7 @@ def call(
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).

Returns:

Examples:

```python
>>> from transformers import ViTFeatureExtractor, TFViTForImageClassification
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
>>> model = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224")

>>> inputs = feature_extractor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
>>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
```"""
"""

outputs = self.vit(
pixel_values=pixel_values,
Expand Down
1 change: 1 addition & 0 deletions utils/documentation_tests.txt
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ src/transformers/models/van/modeling_van.py
src/transformers/models/vilt/modeling_vilt.py
src/transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py
src/transformers/models/vit/modeling_vit.py
src/transformers/models/vit/modeling_tf_vit.py
src/transformers/models/vit_mae/modeling_vit_mae.py
src/transformers/models/wav2vec2/modeling_wav2vec2.py
src/transformers/models/wav2vec2/tokenization_wav2vec2.py
Expand Down