Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -413,28 +413,22 @@ def check_pt_flax_equivalence(self, pt_model, fx_model, inputs_dict):
pt_inputs = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()}

with torch.no_grad():
pt_outputs = pt_model(**pt_inputs)
pt_logits = pt_outputs.logits
pt_outputs = pt_outputs.to_tuple()

fx_outputs = fx_model(**inputs_dict)
fx_logits = fx_outputs.logits
fx_outputs = fx_outputs.to_tuple()
pt_outputs = pt_model(**pt_inputs).to_tuple()

fx_outputs = fx_model(**inputs_dict).to_tuple()
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
self.assert_almost_equals(fx_logits, pt_logits.numpy(), 4e-2)
for fx_output, pt_output in zip(fx_outputs, pt_outputs):
self.assert_almost_equals(fx_output, pt_output.numpy(), 1e-5)

# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
fx_model_loaded = FlaxSpeechEncoderDecoderModel.from_pretrained(tmpdirname, from_pt=True)

fx_outputs_loaded = fx_model_loaded(**inputs_dict)
fx_logits_loaded = fx_outputs_loaded.logits
fx_outputs_loaded = fx_outputs_loaded.to_tuple()

fx_outputs_loaded = fx_model_loaded(**inputs_dict).to_tuple()
self.assertEqual(len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
self.assert_almost_equals(fx_logits_loaded, pt_logits.numpy(), 4e-2)
for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 1e-5)

# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
Expand All @@ -445,12 +439,11 @@ def check_pt_flax_equivalence(self, pt_model, fx_model, inputs_dict):
pt_model_loaded.eval()

with torch.no_grad():
pt_outputs_loaded = pt_model_loaded(**pt_inputs)
pt_logits_loaded = pt_outputs_loaded.logits
pt_outputs_loaded = pt_outputs_loaded.to_tuple()
pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

self.assertEqual(len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch")
self.assert_almost_equals(fx_logits, pt_logits_loaded.numpy(), 4e-2)
for fx_output, pt_output_loaded in zip(fx_outputs, pt_outputs_loaded):
self.assert_almost_equals(fx_output, pt_output_loaded.numpy(), 1e-5)

def check_equivalence_pt_to_flax(self, config, decoder_config, inputs_dict):

Expand Down