Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions src/transformers/models/auto/feature_extraction_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,10 @@ def feature_extractor_class_from_name(class_name: str):
return getattr(module, class_name)
break

for config, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(extractor, "__name__", None) == class_name:
return extractor

return None


Expand Down Expand Up @@ -301,3 +305,15 @@ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following "
"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}"
)

@staticmethod
def register(config_class, feature_extractor_class):
"""
Register a new feature extractor for this class.

Args:
config_class ([`PretrainedConfig`]):
The configuration corresponding to the model to register.
feature_extractor_class ([`FeatureExtractorMixin`]): The feature extractor to register.
"""
FEATURE_EXTRACTOR_MAPPING.register(config_class, feature_extractor_class)
40 changes: 38 additions & 2 deletions tests/test_feature_extraction_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,28 @@

import json
import os
import sys
import tempfile
import unittest

from transformers import AutoFeatureExtractor, Wav2Vec2Config, Wav2Vec2FeatureExtractor
from pathlib import Path

from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
Wav2Vec2Config,
Wav2Vec2FeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER


sys.path.append(str(Path(__file__).parent.parent / "utils"))

from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402


SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures")
SAMPLE_FEATURE_EXTRACTION_CONFIG = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "fixtures/dummy_feature_extractor_config.json"
Expand Down Expand Up @@ -88,3 +103,24 @@ def test_from_pretrained_dynamic_feature_extractor(self):
"hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True
)
self.assertEqual(model.__class__.__name__, "NewFeatureExtractor")

def test_new_feature_extractor_registration(self):
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(ValueError):
AutoFeatureExtractor.register(Wav2Vec2Config, Wav2Vec2FeatureExtractor)

# Now that the config is registered, it can be used as any other config with the auto-API
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(tmp_dir)
new_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir)
self.assertIsInstance(new_feature_extractor, CustomFeatureExtractor)

finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
3 changes: 3 additions & 0 deletions tests/test_feature_extraction_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,9 @@
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures")


SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures")


def prepare_image_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
Expand Down