2.16.1
What's new?
-
Add support for the
image-feature-extraction
pipeline in #650.Example: Perform image feature extraction with
Xenova/vit-base-patch16-224-in21k
.const image_feature_extractor = await pipeline('image-feature-extraction', 'Xenova/vit-base-patch16-224-in21k'); const url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png'; const features = await image_feature_extractor(url); // Tensor { // dims: [ 1, 197, 768 ], // type: 'float32', // data: Float32Array(151296) [ ... ], // size: 151296 // }
Example: Compute image embeddings with
Xenova/clip-vit-base-patch32
.const image_feature_extractor = await pipeline('image-feature-extraction', 'Xenova/clip-vit-base-patch32'); const url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png'; const features = await image_feature_extractor(url); // Tensor { // dims: [ 1, 512 ], // type: 'float32', // data: Float32Array(512) [ ... ], // size: 512 // }
-
Fix channel format when padding non-square images for certain models in #655. This means you can now perform super-resolution for non-square images with APISR models:
Example: Upscale an image with
Xenova/4x_APISR_GRL_GAN_generator-onnx
.import { pipeline } from '@xenova/transformers'; // Create image-to-image pipeline const upscaler = await pipeline('image-to-image', 'Xenova/4x_APISR_GRL_GAN_generator-onnx', { quantized: false, }); // Upscale an image const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/anime.png'; const output = await upscaler(url); // RawImage { // data: Uint8Array(16588800) [ ... ], // width: 2560, // height: 1920, // channels: 3 // } // (Optional) Save the upscaled image output.save('upscaled.png');
-
Update tokenizer
apply_chat_template
functionality in #647. This PR added functionality to support the new C4AI Command-R tokenizer.See example tool usage
import { AutoTokenizer } from "@xenova/transformers"; const tokenizer = await AutoTokenizer.from_pretrained("Xenova/c4ai-command-r-v01-tokenizer") // define conversation input: const conversation = [ { role: "user", content: "Whats the biggest penguin in the world?" } ] // Define tools available for the model to use: const tools = [ { name: "internet_search", description: "Returns a list of relevant document snippets for a textual query retrieved from the internet", parameter_definitions: { query: { description: "Query to search the internet with", type: "str", required: true } } }, { name: "directly_answer", description: "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history", parameter_definitions: {} } ] // render the tool use prompt as a string: const tool_use_prompt = tokenizer.apply_chat_template( conversation, { chat_template: "tool_use", tokenize: false, add_generation_prompt: true, tools, } ) console.log(tool_use_prompt)
See example RAG usage
import { AutoTokenizer } from "@xenova/transformers"; const tokenizer = await AutoTokenizer.from_pretrained("Xenova/c4ai-command-r-v01-tokenizer") // define conversation input: const conversation = [ { role: "user", content: "Whats the biggest penguin in the world?" } ] // define documents to ground on: const documents = [ { title: "Tall penguins", text: "Emperor penguins are the tallest growing up to 122 cm in height." }, { title: "Penguin habitats", text: "Emperor penguins only live in Antarctica." } ] // render the RAG prompt as a string: const grounded_generation_prompt = tokenizer.apply_chat_template( conversation, { chat_template: "rag", tokenize: false, add_generation_prompt: true, documents, citation_mode: "accurate", // or "fast" } ) console.log(grounded_generation_prompt);
-
Add support for EfficientNet in #639.
Example: Classify images with
chriamue/bird-species-classifier
import { pipeline } from '@xenova/transformers'; // Create image classification pipeline const classifier = await pipeline('image-classification', 'chriamue/bird-species-classifier', { quantized: false, // Quantized model doesn't work revision: 'refs/pr/1', // Needed until the model author merges the PR }); // Classify an image const url = 'https://upload.wikimedia.org/wikipedia/commons/7/73/Short_tailed_Albatross1.jpg'; const output = await classifier(url); console.log(output) // [{ label: 'ALBATROSS', score: 0.9999023079872131 }]
Full Changelog: 2.16.0...2.16.1