- Text Generation Inference on Habana Gaudi
The following table contains models and configurations we have validated on Gaudi2.
 Model |  BF16 |  FP8 | ||
---|---|---|---|---|
 Single Card |  Multi-Card |  Single Card |  Multi-Card | |
 Llama2-7B |  ✔ |  ✔ |  ✔ |  ✔ |
 Llama2-70B |  ✔ |  ✔ | ||
 Llama3-8B |  ✔ |  ✔ |  ✔ |  ✔ |
 Llama3-70B |  ✔ |  ✔ | ||
 Llama3.1-8B |  ✔ |  ✔ |  ✔ |  ✔ |
 Llama3.1-70B |  ✔ |  ✔ | ||
 CodeLlama-13B |  ✔ |  ✔ |  ✔ |  ✔ |
 Mixtral-8x7B |  ✔ |  ✔ |  ✔ |  ✔ |
 Mistral-7B |  ✔ |  ✔ |  ✔ |  ✔ |
 Falcon-180B |  ✔ |  ✔ | ||
 Qwen2-72B |  ✔ |  ✔ | ||
 Starcoder2-3b |  ✔ |  ✔ |  ✔ | |
 Starcoder2-15b |  ✔ |  ✔ |  ✔ | |
 Starcoder |  ✔ |  ✔ |  ✔ |  ✔ |
 Gemma-7b |  ✔ |  ✔ |  ✔ |  ✔ |
 Llava-v1.6-Mistral-7B |  ✔ |  ✔ |  ✔ |  ✔ |
To use 🤗 text-generation-inference on Habana Gaudi/Gaudi2/Gaudi3, follow these steps:
- Pull the official Docker image with:
docker pull ghcr.io/huggingface/tgi-gaudi:2.3.1
Note
Alternatively, you can build the Docker image using the Dockerfile
located in this folder with:
docker build -t tgi_gaudi .
- Use one of the following snippets to launch a local server instance:
Note
For gated models such as meta-llama/Llama-2-7b-hf, you will have to pass -e HF_TOKEN=<token>
to the docker run
commands below with a valid Hugging Face Hub read token.
i. On 1 Gaudi card
model=meta-llama/Llama-2-7b-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 -v $volume:/data --runtime=habana -e HABANA_VISIBLE_DEVICES=all \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN=$hf_token \
-e ENABLE_HPU_GRAPH=true -e LIMIT_HPU_GRAPH=true -e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true --cap-add=sys_nice --ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 --model-id $model --max-input-tokens 1024 \
--max-total-tokens 2048
ii. On 8 Gaudi cards:
model=meta-llama/Llama-2-70b-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 -v $volume:/data --runtime=habana -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \
-e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e HF_TOKEN=$hf_token -e ENABLE_HPU_GRAPH=true -e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true -e FLASH_ATTENTION_RECOMPUTE=true --cap-add=sys_nice \
--ipc=host ghcr.io/huggingface/tgi-gaudi:2.3.1 --model-id $model --sharded true \
--num-shard 8 --max-input-tokens 1024 --max-total-tokens 2048
- Wait for the TGI-Gaudi server to come online. You will see something like so:
2024-05-22T19:31:48.302239Z INFO text_generation_router: router/src/main.rs:378: Connected You can then send a simple request to the server from a separate terminal:
curl 127.0.0.1:8080/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":32}}' \ -H 'Content-Type: application/json'
- Please note that the model warmup can take several minutes, especially for FP8 inference. To minimize this time in consecutive runs, please refer to Disk Caching Eviction Policy.
The following are command examples for TGI models inference with BF16 precision.
model=meta-llama/Llama-2-7b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
-v $volume:/data \
-e HABANA_VISIBLE_DEVICES=all \
-e HF_TOKEN=$hf_token \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
-e ENABLE_HPU_GRAPH=true \
-e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true \
--cap-add=sys_nice \
--ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 \
--model-id $model \
--max-input-length 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-total-tokens 65536 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64
model=meta-llama/Llama-2-70b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
-v $volume:/data \
-e HABANA_VISIBLE_DEVICES=all \
-e HF_TOKEN=$hf_token \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \
-e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
-e ENABLE_HPU_GRAPH=true \
-e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true \
--cap-add=sys_nice \
--ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-length 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-total-tokens 524288 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
model=meta-llama/Meta-Llama-3.1-8B-Instruct
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
-v $volume:/data \
-e HABANA_VISIBLE_DEVICES=all \
-e HF_TOKEN=$hf_token \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
-e ENABLE_HPU_GRAPH=true \
-e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true \
--cap-add=sys_nice \
--ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 \
--model-id $model \
--max-input-length 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-total-tokens 65536 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64
model=meta-llama/Meta-Llama-3.1-70B-Instruct
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
-v $volume:/data \
-e HABANA_VISIBLE_DEVICES=all \
-e HF_TOKEN=$hf_token \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \
-e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
-e ENABLE_HPU_GRAPH=true \
-e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true \
--cap-add=sys_nice \
--ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-length 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-total-tokens 524288 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
In Llava-v1.6-Mistral-7B, an image usually accounts for 2000 input tokens. For example, an image of size 512x512 is represented by 2800 tokens. Thus, max-input-tokens
must be larger than the number of tokens associated with the image. Otherwise the image may be truncated. We set BASE_IMAGE_TOKENS=2048
as the default image token value. This is the minimum value of max-input-tokens
. You can override the environment variable BASE_IMAGE_TOKENS
to change this value. The warmup will generate graphs with input length from BASE_IMAGE_TOKENS
to max-input-tokens
. For Llava-v1.6-Mistral-7B, the value of max-batch-prefill-tokens
is 16384, which is calcualted as follows: prefill_batch_size
= max-batch-prefill-tokens
/ max-input-tokens
.
model=llava-hf/llava-v1.6-mistral-7b-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
-v $volume:/data \
-e HABANA_VISIBLE_DEVICES=all \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \
-e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \
-e HF_HUB_ENABLE_HF_TRANSFER=1 \
-e ENABLE_HPU_GRAPH=true \
-e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true \
-e PREFILL_BATCH_BUCKET_SIZE=1 \
-e BATCH_BUCKET_SIZE=1 \
--cap-add=sys_nice \
--ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 \
--model-id $model \
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
--max-total-tokens 8192 --max-batch-total-tokens 32768
Send the simple request.
curl -N 127.0.0.1:8080/generate_stream \
-X POST \
-d '{"inputs":"![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)What is this a picture of?\n\n","parameters":{"max_new_tokens":16, "seed": 42}}' \
-H 'Content-Type: application/json'
TGI-Gaudi supports FP8 precision inference with Intel Neural Compressor (INC). FP8 inference can be run by setting QUANT_CONFIG environment variable in the docker command.
To run FP8 Inference:
- Measure statistics by using Optimum Habana measurement script
- Run the model in TGI with QUANT_CONFIG setting - e.g.
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json
.
The following are the commmand examples for FP8 inference based on the assumption that measurement is done in the first step above.
model=meta-llama/Llama-2-7b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HABANA_VISIBLE_DEVICES=all \
-e HF_TOKEN=$hf_token \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
-e ENABLE_HPU_GRAPH=true \
-e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true \
--cap-add=sys_nice \
--ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 \
--model-id $model \
--max-input-length 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-total-tokens 65536 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64
model=meta-llama/Llama-2-70b-chat-hf
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HABANA_VISIBLE_DEVICES=all \
-e HF_TOKEN=$hf_token \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \
-e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
-e ENABLE_HPU_GRAPH=true \
-e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true \
--cap-add=sys_nice \
--ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-length 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-total-tokens 524288 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
model=meta-llama/Meta-Llama-3.1-8B-Instruct
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HABANA_VISIBLE_DEVICES=all \
-e HF_TOKEN=$hf_token \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \
-e MAX_TOTAL_TOKENS=2048 \
-e PREFILL_BATCH_BUCKET_SIZE=2 \
-e BATCH_BUCKET_SIZE=32 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=256 \
-e ENABLE_HPU_GRAPH=true \
-e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true \
--cap-add=sys_nice \
--ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 \
--model-id $model \
--max-input-length 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 --max-batch-total-tokens 65536 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 64
model=meta-llama/Meta-Llama-3.1-70B-Instruct
hf_token=YOUR_ACCESS_TOKEN
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HABANA_VISIBLE_DEVICES=all \
-e HF_TOKEN=$hf_token \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \
-e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \
-e MAX_TOTAL_TOKENS=2048 \
-e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
-e ENABLE_HPU_GRAPH=true \
-e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true \
--cap-add=sys_nice \
--ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-length 1024 --max-total-tokens 2048 \
--max-batch-prefill-tokens 4096 --max-batch-total-tokens 524288 \
--max-waiting-tokens 7 --waiting-served-ratio 1.2 --max-concurrent-requests 512
model=llava-hf/llava-v1.6-mistral-7b-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HABANA_VISIBLE_DEVICES=all \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \
-e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \
-e HF_HUB_ENABLE_HF_TRANSFER=1 \
-e ENABLE_HPU_GRAPH=true \
-e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true \
-e PREFILL_BATCH_BUCKET_SIZE=1 \
-e BATCH_BUCKET_SIZE=1 \
--cap-add=sys_nice \
--ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 \
--model-id $model \
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
--max-total-tokens 8192 --max-batch-total-tokens 32768
model=llava-hf/llava-v1.6-mistral-7b-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run -p 8080:80 \
--runtime=habana \
-v $volume:/data \
-v $PWD/quantization_config:/usr/src/quantization_config \
-v $PWD/hqt_output:/usr/src/hqt_output \
-e QUANT_CONFIG=./quantization_config/maxabs_quant.json \
-e HABANA_VISIBLE_DEVICES=all \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
-e TEXT_GENERATION_SERVER_IGNORE_EOS_TOKEN=true \
-e PT_HPU_ENABLE_LAZY_COLLECTIVES=true \
-e HF_HUB_ENABLE_HF_TRANSFER=1 \
-e ENABLE_HPU_GRAPH=true \
-e LIMIT_HPU_GRAPH=true \
-e USE_FLASH_ATTENTION=true \
-e FLASH_ATTENTION_RECOMPUTE=true \
-e PREFILL_BATCH_BUCKET_SIZE=1 \
-e BATCH_BUCKET_SIZE=1 \
--cap-add=sys_nice \
--ipc=host \
ghcr.io/huggingface/tgi-gaudi:2.3.1 \
--model-id $model \
--sharded true --num-shard 8 \
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
--max-total-tokens 8192 --max-batch-total-tokens 32768
To run static batching benchmark, please refer to TGI's benchmark tool.
To run it on the same machine, you can do the following:
docker exec -it <docker name> bash
, pick the docker started from step 2 using docker pstext-generation-benchmark -t <model-id>
, pass the model-id from docker run command- after the completion of tests, hit ctrl+c to see the performance data summary.
Note: This benchmark runs the model with bs=[1, 2, 4, 8, 16, 32], sequence_length=10 and decode_length=8 by default. if you want to run other configs, please check text-generation-benchmark -h and change the parameters.
To run continuous batching benchmark, please refer to README in examples folder.
Maximum sequence length is controlled by two arguments:
--max-input-tokens
is the maximum possible input prompt length. Default value is4095
.--max-total-tokens
is the maximum possible total length of the sequence (input and output). Default value is4096
.
Maximum batch size is controlled by two arguments:
- For prefill operation, please set
--max-batch-prefill-tokens
asbs * max-input-tokens
, wherebs
is your expected maximum prefill batch size. - For decode operation, please set
--max-batch-total-tokens
asbs * max-total-tokens
, wherebs
is your expected maximum decode batch size. - Please note that batch size will be always padded to the nearest multiplication of
BATCH_BUCKET_SIZE
andPREFILL_BATCH_BUCKET_SIZE
.
To ensure greatest performance results, at the beginning of each server run, warmup is performed. It's designed to cover major recompilations while using HPU Graphs. It creates queries with all possible input shapes, based on provided parameters (described in this section) and runs basic TGI operations on them (prefill, decode, concatenate).
Except those already mentioned, there are other parameters that need to be properly adjusted to improve performance or memory usage:
PAD_SEQUENCE_TO_MULTIPLE_OF
determines sizes of input length buckets. Since warmup creates several graphs for each bucket, it's important to adjust that value proportionally to input sequence length. Otherwise, some out of memory issues can be observed.ENABLE_HPU_GRAPH
enables HPU graphs usage, which is crucial for performance results. Recommended value to keep istrue
.
For more information and documentation about Text Generation Inference, checkout the README of the original repo.
Name | Value(s) | Default | Description | Usage |
---|---|---|---|---|
ENABLE_HPU_GRAPH | True/False | True | Enable hpu graph or not | add -e in docker run command |
LIMIT_HPU_GRAPH | True/False | False | Skip HPU graph usage for prefill to save memory, set to True for large sequence/decoding lengths(e.g. 300/212) |
add -e in docker run command |
BATCH_BUCKET_SIZE | integer | 8 | Batch size for decode operation will be rounded to the nearest multiple of this number. This limits the number of cached graphs | add -e in docker run command |
PREFILL_BATCH_BUCKET_SIZE | integer | 4 | Batch size for prefill operation will be rounded to the nearest multiple of this number. This limits the number of cached graphs | add -e in docker run command |
PAD_SEQUENCE_TO_MULTIPLE_OF | integer | 128 | For prefill operation, sequences will be padded to a multiple of provided value. | add -e in docker run command |
SKIP_TOKENIZER_IN_TGI | True/False | False | Skip tokenizer for input/output processing | add -e in docker run command |
WARMUP_ENABLED | True/False | True | Enable warmup during server initialization to recompile all graphs. This can increase TGI setup time. | add -e in docker run command |
QUEUE_THRESHOLD_MS | integer | 120 | Controls the threshold beyond which the request are considered overdue and handled with priority. Shorter requests are prioritized otherwise. | add -e in docker run command |
USE_FLASH_ATTENTION | True/False | False | Whether to enable Habana Flash Attention, provided that the model supports it. Currently only llama and mistral supports this feature. Please refer to https://docs.habana.ai/en/latest/PyTorch/Model_Optimization_PyTorch/Optimization_in_PyTorch_Models.html?highlight=fusedsdpa#using-fused-scaled-dot-product-attention-fusedsdpa | |
FLASH_ATTENTION_RECOMPUTE | True/False | False | Whether to enable Habana Flash Attention in recompute mode on first token generation. |
To collect performance profiling, please set below environment variables:
Name | Value(s) | Default | Description | Usage |
---|---|---|---|---|
PROF_WAITSTEP | integer | 0 | Control profile wait steps | add -e in docker run command |
PROF_WARMUPSTEP | integer | 0 | Control profile warmup steps | add -e in docker run command |
PROF_STEP | integer | 0 | Enable/disable profile, control profile active steps | add -e in docker run command |
PROF_PATH | string | /tmp/hpu_profile | Define profile folder | add -e in docker run command |
PROF_RANKS | string | 0 | Comma-separated list of ranks to profile | add -e in docker run command |
PROF_RECORD_SHAPES | True/False | False | Control record_shapes option in the profiler | add -e in docker run command |
The license to use TGI on Habana Gaudi is the one of TGI: https://github.com/huggingface/text-generation-inference/blob/main/LICENSE
Please reach out to [email protected] if you have any question.