Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 20 additions & 9 deletions src/lighteval/metrics/llm_as_judge.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@

from tqdm import tqdm

from lighteval.models.model_output import ModelResponse
from lighteval.utils.imports import is_litellm_available, is_openai_available, is_vllm_available


Expand Down Expand Up @@ -195,20 +196,30 @@ def __call_litellm(self, prompts):
def __call_api(prompt):
for _ in range(self.API_MAX_RETRY):
try:
response = litellm.completion(
model=self.model,
messages=prompt,
response_format={"type": "text"},
max_tokens=512,
n=1,
caching=True,
)
kwargs = {
"model": self.model,
"messages": prompt,
"response_format": {"type": "text"},
"max_tokens": 512,
"n": 1,
"caching": True,
}
response = litellm.completion(**kwargs)
text = response.choices[0].message.content
if not text or response.failed:
kwargs["caching"] = False
response = litellm.completion(**kwargs)
text = response.choices[0].message.content
if not text or response.failed:
# Just return an error response if the second attempt fails too
return ModelResponse(
text="Failed to get response from the API.", model=self.model, failed=True
)
return text
except Exception as e:
logger.warning(f"{type(e), e}")
time.sleep(self.API_RETRY_SLEEP)
raise Exception("Failed to get response from the API")
return ModelResponse(text="Failed to get response from the API.", model=self.model, failed=True)

results = []
with ThreadPoolExecutor(100) as executor:
Expand Down
1 change: 1 addition & 0 deletions src/lighteval/models/model_output.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ class ModelResponse:
generated_tokens: list[int] = field(default_factory=list) # model generations
truncated_tokens_count: Optional[int] = 0 # How many tokens truncated
padded_tokens_count: Optional[int] = 0 # How many tokens of padding
failed: bool = False

def get_result_for_eval(self):
raise NotImplementedError()
Expand Down
Loading