Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 19 additions & 9 deletions examples/dreambooth/train_dreambooth_lora_sd3.py
Original file line number Diff line number Diff line change
Expand Up @@ -1462,7 +1462,18 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
bsz = model_input.shape[0]

# Sample a random timestep for each image
indices = torch.randint(0, noise_scheduler_copy.config.num_train_timesteps, (bsz,))
# for weighting schemes where we sample timesteps non-uniformly
if args.weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=args.logit_mean, std=args.logit_std, size=(bsz,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif args.weighting_scheme == "mode":
u = torch.rand(size=(bsz,), device="cpu")
u = 1 - u - args.mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(bsz,), device="cpu")

indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device)

# Add noise according to flow matching.
Expand All @@ -1483,16 +1494,15 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
model_pred = model_pred * (-sigmas) + noisy_model_input

# TODO (kashif, sayakpaul): weighting sceme needs to be experimented with :)
# these weighting schemes use a uniform timestep sampling
# and instead post-weight the loss
if args.weighting_scheme == "sigma_sqrt":
weighting = (sigmas**-2.0).float()
elif args.weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=args.logit_mean, std=args.logit_std, size=(bsz,), device=accelerator.device)
weighting = torch.nn.functional.sigmoid(u)
elif args.weighting_scheme == "mode":
# See sec 3.1 in the SD3 paper (20).
u = torch.rand(size=(bsz,), device=accelerator.device)
weighting = 1 - u - args.mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
elif args.weighting_scheme == "cosmap":
bot = 1 - 2 * sigmas + 2 * sigmas**2
weighting = 2 / (math.pi * bot)
else:
weighting = torch.ones_like(sigmas)

# simplified flow matching aka 0-rectified flow matching loss
# target = model_input - noise
Expand Down
30 changes: 19 additions & 11 deletions examples/dreambooth/train_dreambooth_sd3.py
Original file line number Diff line number Diff line change
Expand Up @@ -1526,7 +1526,18 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
bsz = model_input.shape[0]

# Sample a random timestep for each image
indices = torch.randint(0, noise_scheduler_copy.config.num_train_timesteps, (bsz,))
# for weighting schemes where we sample timesteps non-uniformly
if args.weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=args.logit_mean, std=args.logit_std, size=(bsz,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif args.weighting_scheme == "mode":
u = torch.rand(size=(bsz,), device="cpu")
u = 1 - u - args.mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(bsz,), device="cpu")

indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device)

# Add noise according to flow matching.
Expand Down Expand Up @@ -1560,18 +1571,15 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
# Follow: Section 5 of https://arxiv.org/abs/2206.00364.
# Preconditioning of the model outputs.
model_pred = model_pred * (-sigmas) + noisy_model_input

# TODO (kashif, sayakpaul): weighting sceme needs to be experimented with :)
# these weighting schemes use a uniform timestep sampling
# and instead post-weight the loss
if args.weighting_scheme == "sigma_sqrt":
weighting = (sigmas**-2.0).float()
elif args.weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=args.logit_mean, std=args.logit_std, size=(bsz,), device=accelerator.device)
weighting = torch.nn.functional.sigmoid(u)
elif args.weighting_scheme == "mode":
# See sec 3.1 in the SD3 paper (20).
u = torch.rand(size=(bsz,), device=accelerator.device)
weighting = 1 - u - args.mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
elif args.weighting_scheme == "cosmap":
bot = 1 - 2 * sigmas + 2 * sigmas**2
weighting = 2 / (math.pi * bot)
else:
weighting = torch.ones_like(sigmas)

# simplified flow matching aka 0-rectified flow matching loss
# target = model_input - noise
Expand Down