Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Unpin pydantic test dependency #5397

Merged
merged 1 commit into from
Dec 30, 2022

Conversation

albertvillanova
Copy link
Member

@albertvillanova albertvillanova commented Dec 30, 2022

Once pydantic-1.10.3 has been yanked, we can unpin it: https://pypi.org/project/pydantic/1.10.3/

See reply by pydantic team pydantic/pydantic#4885 (comment)

v1.10.3 has been yanked.

in response to spacy request: pydantic/pydantic#4885 (comment)

On behalf of spacy-related packages: would it be possible for you to temporarily yank v1.10.3?

To address this and be compatible with v1.10.4, we'd have to release new versions of a whole series of packages and nearly everyone (including me) is currently on vacation. Even if v1.10.4 is released with a fix, pip would still back off to v1.10.3 for spacy, etc. because of its current pins for typing_extensions. If it could instead back off to v1.10.2, we'd have a bit more breathing room to make the updates on our end.

Close #5398.

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Dec 30, 2022

The documentation is not available anymore as the PR was closed or merged.

@albertvillanova albertvillanova changed the title Unpin pydantic Unpin pydantic test dependency Dec 30, 2022
@albertvillanova albertvillanova merged commit 310cddd into huggingface:main Dec 30, 2022
@albertvillanova albertvillanova deleted the unpin-pydantic branch December 30, 2022 10:43
@github-actions
Copy link

Show benchmarks

PyArrow==6.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.012922 / 0.011353 (0.001569) 0.006568 / 0.011008 (-0.004440) 0.139567 / 0.038508 (0.101059) 0.039362 / 0.023109 (0.016253) 0.444238 / 0.275898 (0.168340) 0.529102 / 0.323480 (0.205622) 0.010275 / 0.007986 (0.002290) 0.006134 / 0.004328 (0.001805) 0.107506 / 0.004250 (0.103255) 0.047948 / 0.037052 (0.010896) 0.460469 / 0.258489 (0.201980) 0.516817 / 0.293841 (0.222976) 0.058637 / 0.128546 (-0.069909) 0.019516 / 0.075646 (-0.056130) 0.464111 / 0.419271 (0.044839) 0.062140 / 0.043533 (0.018607) 0.445004 / 0.255139 (0.189865) 0.460117 / 0.283200 (0.176917) 0.116591 / 0.141683 (-0.025092) 1.936834 / 1.452155 (0.484680) 1.941837 / 1.492716 (0.449120)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.284130 / 0.018006 (0.266124) 0.588109 / 0.000490 (0.587619) 0.004383 / 0.000200 (0.004183) 0.000143 / 0.000054 (0.000089)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032984 / 0.037411 (-0.004427) 0.132811 / 0.014526 (0.118285) 0.150932 / 0.176557 (-0.025625) 0.203759 / 0.737135 (-0.533377) 0.149612 / 0.296338 (-0.146726)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.677666 / 0.215209 (0.462457) 6.627611 / 2.077655 (4.549956) 2.679526 / 1.504120 (1.175406) 2.272536 / 1.541195 (0.731342) 2.371179 / 1.468490 (0.902689) 1.205282 / 4.584777 (-3.379495) 5.733537 / 3.745712 (1.987825) 3.165279 / 5.269862 (-2.104583) 2.287918 / 4.565676 (-2.277759) 0.144581 / 0.424275 (-0.279695) 0.016812 / 0.007607 (0.009205) 0.841719 / 0.226044 (0.615675) 8.379119 / 2.268929 (6.110191) 3.507169 / 55.444624 (-51.937456) 2.756666 / 6.876477 (-4.119811) 2.814091 / 2.142072 (0.672018) 1.495835 / 4.805227 (-3.309392) 0.253651 / 6.500664 (-6.247013) 0.081258 / 0.075469 (0.005789)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.651586 / 1.841788 (-0.190202) 19.039628 / 8.074308 (10.965320) 21.269814 / 10.191392 (11.078421) 0.241024 / 0.680424 (-0.439400) 0.047975 / 0.534201 (-0.486225) 0.563727 / 0.579283 (-0.015556) 0.666808 / 0.434364 (0.232445) 0.661065 / 0.540337 (0.120728) 0.762884 / 1.386936 (-0.624052)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.010141 / 0.011353 (-0.001212) 0.006216 / 0.011008 (-0.004792) 0.135491 / 0.038508 (0.096983) 0.035439 / 0.023109 (0.012330) 0.482789 / 0.275898 (0.206891) 0.520673 / 0.323480 (0.197193) 0.006358 / 0.007986 (-0.001627) 0.005432 / 0.004328 (0.001104) 0.094448 / 0.004250 (0.090197) 0.048379 / 0.037052 (0.011326) 0.509359 / 0.258489 (0.250870) 0.539583 / 0.293841 (0.245742) 0.054621 / 0.128546 (-0.073925) 0.021382 / 0.075646 (-0.054265) 0.435539 / 0.419271 (0.016267) 0.060630 / 0.043533 (0.017097) 0.469593 / 0.255139 (0.214454) 0.507838 / 0.283200 (0.224639) 0.112062 / 0.141683 (-0.029621) 1.829694 / 1.452155 (0.377539) 1.972266 / 1.492716 (0.479549)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.291669 / 0.018006 (0.273663) 0.590104 / 0.000490 (0.589614) 0.000661 / 0.000200 (0.000461) 0.000082 / 0.000054 (0.000028)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.034933 / 0.037411 (-0.002479) 0.134867 / 0.014526 (0.120341) 0.138892 / 0.176557 (-0.037665) 0.192619 / 0.737135 (-0.544516) 0.153787 / 0.296338 (-0.142551)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.666762 / 0.215209 (0.451553) 6.741736 / 2.077655 (4.664082) 2.988712 / 1.504120 (1.484592) 2.554823 / 1.541195 (1.013628) 2.655651 / 1.468490 (1.187161) 1.276603 / 4.584777 (-3.308174) 5.827960 / 3.745712 (2.082247) 5.046876 / 5.269862 (-0.222985) 2.829775 / 4.565676 (-1.735902) 0.151525 / 0.424275 (-0.272750) 0.016504 / 0.007607 (0.008897) 0.849749 / 0.226044 (0.623704) 8.331675 / 2.268929 (6.062747) 3.664529 / 55.444624 (-51.780096) 2.976495 / 6.876477 (-3.899982) 3.034737 / 2.142072 (0.892664) 1.499036 / 4.805227 (-3.306191) 0.261027 / 6.500664 (-6.239637) 0.088306 / 0.075469 (0.012837)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.693506 / 1.841788 (-0.148282) 18.939914 / 8.074308 (10.865605) 20.685460 / 10.191392 (10.494068) 0.218316 / 0.680424 (-0.462108) 0.029010 / 0.534201 (-0.505191) 0.565246 / 0.579283 (-0.014037) 0.633573 / 0.434364 (0.199209) 0.656895 / 0.540337 (0.116558) 0.781975 / 1.386936 (-0.604961)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Unpin pydantic
2 participants