[Homepage] [Document] [Examples] [Hora]
Python binding for the Hora Approximate Nearest Neighbor Search
-
Performant โก๏ธ
- SIMD-Accelerated (packed_simd)
- Stable algorithm implementation
- Multiple threads design
-
Multiple Indexes Support ๐
-
Portable ๐ผ
- Support
no_std
(WIP, partial) - Support
Windows
,Linux
andOS X
- Support
IOS
andAndroid
(WIP) - No heavy dependency, such as
BLAS
- Support
-
Reliability ๐
Rust
compiler secure all code- Memory managed by
Rust
- Broad testing coverage
-
Multiple Distances Support ๐งฎ
-
Productive โญ
- Well documented
- Elegant and simple API, easy to learn
by aws t2.medium (CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz)
more information
pip install horapy
import numpy as np
from horapy import HNSWIndex
dimension = 50
n = 1000
# init index instance
index = HNSWIndex(dimension, "usize")
samples = np.float32(np.random.rand(n, dimension))
for i in range(0, len(samples)):
# add node
index.add(np.float32(samples[i]), i)
index.build("euclidean") # build index
target = np.random.randint(0, n)
# 410 in Hora ANNIndex <HNSWIndexUsize> (dimension: 50, dtype: usize, max_item: 1000000, n_neigh: 32, n_neigh0: 64, ef_build: 20, ef_search: 500, has_deletion: False)
# has neighbors: [410, 736, 65, 36, 631, 83, 111, 254, 990, 161]
print("{} in {} \nhas neighbors: {}".format(
target, index, index.search(samples[target], 10))) # search
The entire repo is under Apache License.