torchlit
is an in progress collection of Pytorch utilities and thin wrappers which can be used for various purposes.
With every project, I intend to add functionalities that are fairly genralized to be put as a boilerplate for different utilities.
It allows you to write less code while focusing on the model itself, rather than its verbosity and how the model is retrieved. Along with this, it consists of data utilities which can be used for purposes of loading data from dataframe, or from a folder for inference, etc.
!pip install torchlit --q
|████████████████████████████████| 911kB 5.4MB/s
|████████████████████████████████| 102kB 7.3MB/s
|████████████████████████████████| 81kB 6.7MB/s
|████████████████████████████████| 7.6MB 9.3MB/s
|████████████████████████████████| 81kB 7.4MB/s
|████████████████████████████████| 102kB 9.5MB/s
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
import torchlit
class Net(torchlit.Model):
def __init__(self):
super(Net, self).__init__(F.cross_entropy, record=True, verbose=True)
self.conv1 = nn.Conv2d(3, 6, 3)
self.conv2 = nn.Conv2d(6, 12, 3)
self.flatten = nn.Flatten()
self.lin = nn.Linear(184512, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.flatten(x)
return self.lin(x)
model = Net()
model
Net(
(conv1): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
(conv2): Conv2d(6, 12, kernel_size=(3, 3), stride=(1, 1))
(flatten): Flatten(start_dim=1, end_dim=-1)
(lin): Linear(in_features=184512, out_features=10, bias=True)
)
train_ds = [(x, y) for x,y in zip(torch.randn((10, 3, 128, 128)), torch.randint(0, 10, (10,)))]
val_ds = [(x,y) for x,y in zip(torch.randn((3, 3, 128, 128)), torch.randint(0, 10, (3,)))]
train_dl = DataLoader(train_ds)
val_dl = DataLoader(val_ds)
EPOCHS = 10
model = Net()
for epoch in range(EPOCHS):
for xb in train_dl:
model.train_step(xb)
for xb in val_dl:
model.val_step(xb)
model.epoch_end()
Epoch [0]: train_loss: 2.3065271377563477, val_loss: 2.3060548305511475, val_acc: 0.0
Epoch [1]: train_loss: 2.3065271377563477, val_loss: 2.3060548305511475, val_acc: 0.0
Epoch [2]: train_loss: 2.3065271377563477, val_loss: 2.3060548305511475, val_acc: 0.0
Epoch [3]: train_loss: 2.3065271377563477, val_loss: 2.3060548305511475, val_acc: 0.0
Epoch [4]: train_loss: 2.3065271377563477, val_loss: 2.3060548305511475, val_acc: 0.0
Epoch [5]: train_loss: 2.3065271377563477, val_loss: 2.3060548305511475, val_acc: 0.0
Epoch [6]: train_loss: 2.3065271377563477, val_loss: 2.3060548305511475, val_acc: 0.0
Epoch [7]: train_loss: 2.3065271377563477, val_loss: 2.3060548305511475, val_acc: 0.0
Epoch [8]: train_loss: 2.3065271377563477, val_loss: 2.3060548305511475, val_acc: 0.0
Epoch [9]: train_loss: 2.3065271377563477, val_loss: 2.3060548305511475, val_acc: 0.0
model.history
[{'epoch': 0,
'train_loss': 2.3326268196105957,
'val_acc': 0.0,
'val_loss': 2.2232437133789062},
{'epoch': 1,
'train_loss': 2.3326268196105957,
'val_acc': 0.0,
'val_loss': 2.2232437133789062},
{'epoch': 2,
'train_loss': 2.3326268196105957,
'val_acc': 0.0,
'val_loss': 2.2232437133789062},
{'epoch': 3,
'train_loss': 2.3326268196105957,
'val_acc': 0.0,
'val_loss': 2.2232437133789062},
{'epoch': 4,
'train_loss': 2.3326268196105957,
'val_acc': 0.0,
'val_loss': 2.2232437133789062},
{'epoch': 5,
'train_loss': 2.3326268196105957,
'val_acc': 0.0,
'val_loss': 2.2232437133789062},
{'epoch': 6,
'train_loss': 2.3326268196105957,
'val_acc': 0.0,
'val_loss': 2.2232437133789062},
{'epoch': 7,
'train_loss': 2.3326268196105957,
'val_acc': 0.0,
'val_loss': 2.2232437133789062},
{'epoch': 8,
'train_loss': 2.3326268196105957,
'val_acc': 0.0,
'val_loss': 2.2232437133789062},
{'epoch': 9,
'train_loss': 2.3326268196105957,
'val_acc': 0.0,
'val_loss': 2.2232437133789062}]