-
Couldn't load subscription status.
- Fork 49
Closed
Description
With the versions:
In [20]: pint_pandas.show_versions()
{'numpy': '1.24.2',
'pandas': '1.5.3',
'pint': '0.20.1',
'pint_pandas': '0.4.dev32+gc58a7fc'}I am unable to run any dataframe-wise aggregation functions along axis=0:
In [19]: pd.DataFrame([[0, 1, 2], [3, 4, 5]]).astype("pint[m]").sum()
/Users/coroa/.local/conda/envs/pandas-indexing/lib/python3.11/site-packages/pandas/core/internals/blocks.py:369: UnitStrippedWarning: The unit of the quantity is stripped when downcasting to ndarray.
res_values = np.array([[result]])
---------------------------------------------------------------------------
DimensionalityError Traceback (most recent call last)
File ~/.local/conda/envs/pandas-indexing/lib/python3.11/site-packages/pint/facets/plain/quantity.py:702, in PlainQuantity.__int__(self)
701 return int(self._convert_magnitude_not_inplace(UnitsContainer()))
--> 702 raise DimensionalityError(self._units, "dimensionless")
DimensionalityError: Cannot convert from 'meter' to 'dimensionless'
The above exception was the direct cause of the following exception:
ValueError Traceback (most recent call last)
Cell In[19], line 1
----> 1 pd.DataFrame([[0, 1, 2], [3, 4, 5]]).astype("pint[m]").sum()
File ~/.local/conda/envs/pandas-indexing/lib/python3.11/site-packages/pandas/core/generic.py:11797, in NDFrame._add_numeric_operations.<locals>.sum(self, axis, skipna, level, numeric_only, min_count, **kwargs)
11777 @doc(
11778 _num_doc,
11779 desc="Return the sum of the values over the requested axis.\n\n"
(...)
11795 **kwargs,
11796 ):
> 11797 return NDFrame.sum(
11798 self, axis, skipna, level, numeric_only, min_count, **kwargs
11799 )
File ~/.local/conda/envs/pandas-indexing/lib/python3.11/site-packages/pandas/core/generic.py:11501, in NDFrame.sum(self, axis, skipna, level, numeric_only, min_count, **kwargs)
11492 def sum(
11493 self,
11494 axis: Axis | None = None,
(...)
11499 **kwargs,
11500 ):
> 11501 return self._min_count_stat_function(
11502 "sum", nanops.nansum, axis, skipna, level, numeric_only, min_count, **kwargs
11503 )
File ~/.local/conda/envs/pandas-indexing/lib/python3.11/site-packages/pandas/core/generic.py:11483, in NDFrame._min_count_stat_function(self, name, func, axis, skipna, level, numeric_only, min_count, **kwargs)
11467 warnings.warn(
11468 "Using the level keyword in DataFrame and Series aggregations is "
11469 "deprecated and will be removed in a future version. Use groupby "
(...)
11472 stacklevel=find_stack_level(),
11473 )
11474 return self._agg_by_level(
11475 name,
11476 axis=axis,
(...)
11480 numeric_only=numeric_only,
11481 )
> 11483 return self._reduce(
11484 func,
11485 name=name,
11486 axis=axis,
11487 skipna=skipna,
11488 numeric_only=numeric_only,
11489 min_count=min_count,
11490 )
File ~/.local/conda/envs/pandas-indexing/lib/python3.11/site-packages/pandas/core/frame.py:10856, in DataFrame._reduce(self, op, name, axis, skipna, numeric_only, filter_type, **kwds)
10852 ignore_failures = numeric_only is None
10854 # After possibly _get_data and transposing, we are now in the
10855 # simple case where we can use BlockManager.reduce
> 10856 res, _ = df._mgr.reduce(blk_func, ignore_failures=ignore_failures)
10857 out = df._constructor(res).iloc[0]
10858 if out_dtype is not None:
File ~/.local/conda/envs/pandas-indexing/lib/python3.11/site-packages/pandas/core/internals/managers.py:1569, in BlockManager.reduce(self, func, ignore_failures)
1567 res_blocks: list[Block] = []
1568 for blk in self.blocks:
-> 1569 nbs = blk.reduce(func, ignore_failures)
1570 res_blocks.extend(nbs)
1572 index = Index([None]) # placeholder
File ~/.local/conda/envs/pandas-indexing/lib/python3.11/site-packages/pandas/core/internals/blocks.py:369, in Block.reduce(self, func, ignore_failures)
365 raise
367 if self.values.ndim == 1:
368 # TODO(EA2D): special case not needed with 2D EAs
--> 369 res_values = np.array([[result]])
370 else:
371 res_values = result.reshape(-1, 1)
ValueError: setting an array element with a sequence.Similarly df.min(), df.max() and so on are failing.
This might be connected with:
hgrecco/pint#1128 (comment)
Metadata
Metadata
Assignees
Labels
No labels