This is a state-of-the-art project for building extraction in high resolution remote sensing image using dataset Massachusetts road & building dataset . And, our approach was published in ACCV 2016, clik here to download our paper
- caffe-fcn-master
- OpenCV 2.4.13
- CUDA V8.0
- CUDNN V5.0
- Protobuf 3.2.0 (please use this version, too low will lead to errors, like "_has_bits is not defined in this scope")
- Boost 1.59.0
- Boost.NumPy
- ssai-lib
cd cmake
cmake ..
make -j16
tar zxvf boost_1_59_0.tar.gz
cd boost_1_59_0
./bootstrap.sh --with-libraries=all --with-toolset=gcc
./b2 toolset=gcc
sudo ./b2 install --prefix=/usr
sudo ldconfig
git clone https://github.com/ndarray/Boost.NumPy.git
cd Boost.Numpy
mkdir build
cd build
cmake ..
vim ../CMakeLists.txt
add some codes before find_package(Boost COMPONENTS Python REQUIRED)
set(BOOST_ROOT “/usr/include/boost”)
set(Boost_LIBRARIES “/usr/include/boost/lib”)
set(Boost_INCLUDE_DIRS “/usr/include/boost/include”)
set(BOOST_LIBRARYDIR “/usr/include/boost/lib”)
sudo make
sudo make install
cd ssai-lib/
mkdir build
cd build
cmake ..
make
sh shells/download_minh_dataset.sh
python scripts/create_dataset_256.py -d /data
python scripts/verify_dataset.py -d /data/mass_building/lmdb/train_sat_256
cd models/HF-FCN_Models/BasicNet/
nohup python solve.py&
cd results/
python ../scripts/run_prediction.py
--model ../models/HF-FCN_Models/BasicNet/predict.prototxt
--weight ../weights/HF-FCN_iter_12000.caffemodel
--img_dir /data/mass_buildings/source/test/sat
python ../scripts/run_evaluation_complex.py \
--gt_dir ../results/GroundTruth \
--pred_dir ../results/whole_image_results/Zuo-HF-FCN-ACCV16 \
--pad 0 \
--relax 0 \
--pr_dir ../results/whole_image_results/PresicionRecallComparision
cd shells/
sh run_pr_curve_comparision.sh
Recall ( \rho = 3 ) | Recall ( \rho = 0) | Time (s) | |
---|---|---|---|
Mnih-CNN \cite{Mnih2013Machine} | 0.9271 | 0.7661 | 8.70 |
Mnih-CNN+CRF \cite{Mnih2013Machine} | 0.9282 | 0.7638 | 26.60 |
Saito-multi-MA \cite{Saito2016Multiple} | 0.9503 | 0.7873 | 67.72 |
Saito-multi-MA&CIS \cite{Saito2016Multiple} | 0.9509 | 0.7872 | 67.84 |
*Ours (HF-FCN) | 0.9643 | 0.8424 | 1.07 |
cd shells/
sh run_recall_comp_for_challenge_patches.sh
Method\Image ID | 01 | 02 | 03 | 04 | 05 | 06 | 07 | mean |
---|---|---|---|---|---|---|---|---|
Mnih-CNN+CRF\cite{Mnih2013Machine} | 0.784 | 0.869 | 0.769 | 0.653 | 0.893 | 0.764 | 0.800 | 0.784 |
Saito-multi-MA&CIS\cite{Saito2016Multiple} | 0.773 | 0.915 | 0.857 | 0.789 | 0.945 | 0.773 | 0.830 | 0.851 |
*Ours (HF-FCN) | 0.874 | 0.964 | 0.899 | 0.901 | 0.986 | 0.840 | 0.851 | 0.911 |
HF-FCN16-iter-12000.caffemodel
Minh13-Machine.caffemodel
Saito16-Multiple-caffemodels
HF-FCN16-results
Mnih13-Machine-results
Saito16-Multiple-results
If you use this code for your project, please cite this conference paper:
@inproceedings{zuo2016hf,
title={HF-FCN: Hierarchically Fused Fully Convolutional Network for Robust Building Extraction},
author={Zuo, Tongchun and Feng, Juntao and Chen, Xuejin},
booktitle={Asian Conference on Computer Vision},
pages={291--302},
year={2016},
organization={Springer}
}