Skip to content

Hierarchically Fused Fully Convolutional Network for Robust Building Extraction ACCV 2016

Notifications You must be signed in to change notification settings

hevinyu/HF-FCN-for-Robust-Building-Extraction

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is a state-of-the-art project for building extraction in high resolution remote sensing image using dataset Massachusetts road & building dataset . And, our approach was published in ACCV 2016, clik here to download our paper

Requirements

  • caffe-fcn-master
  • OpenCV 2.4.13
  • CUDA V8.0
  • CUDNN V5.0
  • Protobuf 3.2.0 (please use this version, too low will lead to errors, like "_has_bits is not defined in this scope")
  • Boost 1.59.0
  • Boost.NumPy
  • ssai-lib

caffe-fcn-master

cd cmake 
cmake ..
make -j16

Boost 1.59.0

tar zxvf boost_1_59_0.tar.gz 
cd boost_1_59_0 
./bootstrap.sh --with-libraries=all --with-toolset=gcc 
./b2 toolset=gcc 
sudo ./b2 install --prefix=/usr 
sudo ldconfig

Boost.NumPy

git clone https://github.com/ndarray/Boost.NumPy.git 
cd Boost.Numpy  
mkdir build 
cd build 
cmake ..   
vim ../CMakeLists.txt   

add some codes before find_package(Boost COMPONENTS Python REQUIRED)  
set(BOOST_ROOT “/usr/include/boost”) 
set(Boost_LIBRARIES “/usr/include/boost/lib”)   
set(Boost_INCLUDE_DIRS “/usr/include/boost/include”) 
set(BOOST_LIBRARYDIR “/usr/include/boost/lib”) 

sudo make 
sudo make install 

ssai-lib

cd ssai-lib/
mkdir build
cd build
cmake ..
make 

Create Dataset

sh shells/download_minh_dataset.sh  
python scripts/create_dataset_256.py  -d /data
python scripts/verify_dataset.py -d /data/mass_building/lmdb/train_sat_256 

Start Training

cd models/HF-FCN_Models/BasicNet/  
nohup python solve.py& 

Prediction

cd results/  
python ../scripts/run_prediction.py 
		 --model ../models/HF-FCN_Models/BasicNet/predict.prototxt  
		 --weight ../weights/HF-FCN_iter_12000.caffemodel  
		 --img_dir /data/mass_buildings/source/test/sat  

Evaluation

python  ../scripts/run_evaluation_complex.py  \
	--gt_dir ../results/GroundTruth   \
	--pred_dir ../results/whole_image_results/Zuo-HF-FCN-ACCV16  \
	--pad 0 \
	--relax 0 \
	--pr_dir ../results/whole_image_results/PresicionRecallComparision

Results Comparision

whole image comparision

cd shells/
sh run_pr_curve_comparision.sh
                                              Recall ( \rho = 3 ) Recall ( \rho = 0) Time (s)
Mnih-CNN \cite{Mnih2013Machine} 0.9271 0.7661 8.70
Mnih-CNN+CRF \cite{Mnih2013Machine} 0.9282 0.7638 26.60
Saito-multi-MA \cite{Saito2016Multiple} 0.9503 0.7873 67.72
Saito-multi-MA&CIS \cite{Saito2016Multiple} 0.9509 0.7872 67.84
*Ours (HF-FCN)                               0.9643             0.8424             1.07 

challenge patches comparision

cd shells/
sh run_recall_comp_for_challenge_patches.sh
Method\Image ID 01 02 03 04 05 06 07 mean
Mnih-CNN+CRF\cite{Mnih2013Machine} 0.784 0.869 0.769 0.653 0.893 0.764 0.800 0.784
Saito-multi-MA&CIS\cite{Saito2016Multiple} 0.773 0.915 0.857 0.789 0.945 0.773 0.830 0.851
*Ours (HF-FCN) 0.874 0.964 0.899 0.901 0.986 0.840 0.851 0.911

Pre-trained models

HF-FCN16-iter-12000.caffemodel
Minh13-Machine.caffemodel
Saito16-Multiple-caffemodels

Predicted results

HF-FCN16-results
Mnih13-Machine-results
Saito16-Multiple-results

Reference

If you use this code for your project, please cite this conference paper:
@inproceedings{zuo2016hf, title={HF-FCN: Hierarchically Fused Fully Convolutional Network for Robust Building Extraction}, author={Zuo, Tongchun and Feng, Juntao and Chen, Xuejin}, booktitle={Asian Conference on Computer Vision}, pages={291--302}, year={2016}, organization={Springer} }

About

Hierarchically Fused Fully Convolutional Network for Robust Building Extraction ACCV 2016

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Makefile 35.0%
  • Jupyter Notebook 28.4%
  • C++ 21.9%
  • CMake 7.1%
  • Python 4.2%
  • Cuda 1.4%
  • Other 2.0%