forked from kaustubh-sadekar/VirtualCam
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added the source of vcam.py from the vcam python package by Kaustubh …
…Sadekar
- Loading branch information
1 parent
eaa9eb9
commit 918443d
Showing
1 changed file
with
121 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
import cv2 | ||
import numpy as np | ||
import math | ||
|
||
|
||
class vcam: | ||
|
||
def __init__(self,H=400,W=400): | ||
""" | ||
H : Desired height of the frame of output video | ||
W : Desired width of the frame of output | ||
""" | ||
self.H = H | ||
self.W = W | ||
self.ox = W//2 | ||
self.oy = H//2 | ||
self.alpha = math.radians(0) | ||
self.beta = math.radians(0) | ||
self.gamma = math.radians(0) | ||
self.Tx = 0 | ||
self.Ty = 0 | ||
self.Tz = 0 | ||
self.K = 0 | ||
self.R = 0 | ||
self.sh = 0 # Shere factor | ||
self.P = 0 | ||
self.KpCoeff = np.array([0,0,0,0,0,0,0,0], dtype=float) # k1,k2,p1,p2,k3,k4,k5,k6 | ||
self.focus = 100 # Focal length of camera in mm | ||
self.sx = 1 # Effective size of a pixel in mm | ||
self.sy = 1 # Effective size of a pixel in mm | ||
self.set_tvec(0,0,-self.focus) | ||
self.update_M() | ||
|
||
def update_M(self): | ||
# Matrix for converting the 2D matrix to 3D matrix | ||
Rx = np.array([[1, 0, 0], [0, math.cos(self.alpha), -math.sin(self.alpha)], [0, math.sin(self.alpha), math.cos(self.alpha)]]) | ||
Ry = np.array([[math.cos(self.beta), 0, -math.sin(self.beta)], [0, 1, 0], [math.sin(self.beta), 0, math.cos(self.beta)]]) | ||
Rz = np.array([[math.cos(self.gamma), -math.sin(self.gamma), 0], [math.sin(self.gamma), math.cos(self.gamma), 0], [0, 0, 1]]) | ||
self.R = np.matmul(Rx, np.matmul(Ry, Rz)) | ||
self.K = np.array([[-self.focus/self.sx,self.sh,self.ox],[0,self.focus/self.sy,self.oy],[0,0,1]]) | ||
self.M1 = np.array([[1,0,0,-self.Tx],[0,1,0,-self.Ty],[0,0,1,-self.Tz]]) | ||
self.RT = np.matmul(self.R,self.M1) | ||
|
||
def project(self,src): | ||
self.update_M() | ||
pts2d = np.matmul(self.RT,src) | ||
|
||
try: | ||
x_1 = pts2d[0,:]*1.0/(pts2d[2,:]+0.0000000001) | ||
y_1 = pts2d[1,:]*1.0/(pts2d[2,:]+0.0000000001) | ||
r_2 = x_1**2 + y_1**2 | ||
r_4 = r_2**2 | ||
r_6 = r_2**3 | ||
K = (1+self.KpCoeff[0]*r_2+self.KpCoeff[1]*r_4+self.KpCoeff[4]*r_6)/((1+self.KpCoeff[5]*r_2+self.KpCoeff[6]*r_4+self.KpCoeff[7]*r_6)) | ||
x_2 = x_1*K + 2*self.KpCoeff[2]*x_1*y_1 + self.KpCoeff[3]*(r_2+2*x_1**2) | ||
y_2 = y_1*K + self.KpCoeff[2]*(r_2 + 2*y_1**2) + 2*self.KpCoeff[3]*x_1*y_1 | ||
x = self.K[0,0]*x_2 + self.K[0,2] | ||
y = self.K[1,1]*y_2 + self.K[1,2] | ||
except: | ||
print("Division by zero!") | ||
x = pts2d[0,:]*0 | ||
y = pts2d[1,:]*0 | ||
|
||
return np.concatenate(([x],[y])) | ||
|
||
def set_tvec(self,x,y,z): | ||
self.Tx = x | ||
self.Ty = y | ||
self.Tz = z | ||
self.update_M() | ||
|
||
def set_rvec(self,alpha,beta,gamma): | ||
self.alpha = (alpha/180.0)*np.pi | ||
self.beta = (beta/180.0)*np.pi | ||
self.gamma = (gamma/180.0)*np.pi | ||
self.update_M() | ||
|
||
def renderMesh(self,src): | ||
""" | ||
Renders the mesh grid points to get better visual understanding | ||
""" | ||
self.update_M() | ||
pts = self.project(src) | ||
canvas = np.zeros((self.H,self.W,3),dtype=np.uint8) | ||
pts = (pts.T).reshape(-1,1,2).astype(np.int32) | ||
cv2.drawContours(canvas,pts,-1,(0,255,0),3) | ||
return canvas | ||
|
||
def applyMesh(self,img,meshPts): | ||
pts1,pts2 = np.split(self.project(meshPts),2) | ||
x = pts1.reshape(self.H,self.W) | ||
y = pts2.reshape(self.H,self.W) | ||
return cv2.remap(img,x.astype(np.float32),y.astype(np.float32),interpolation=cv2.INTER_LINEAR) | ||
|
||
def getMaps(self,pts2d): | ||
pts1,pts2 = np.split(pts2d,2) | ||
x = pts1.reshape(self.H,self.W) | ||
y = pts2.reshape(self.H,self.W) | ||
|
||
return x.astype(np.float32),y.astype(np.float32) | ||
|
||
|
||
class meshGen: | ||
|
||
def __init__(self,H,W): | ||
|
||
self.H = H | ||
self.W = W | ||
|
||
x = np.linspace(-self.W/2, self.W/2, self.W) | ||
y = np.linspace(-self.H/2, self.H/2, self.H) | ||
|
||
xv,yv = np.meshgrid(x,y) | ||
|
||
self.X = xv.reshape(-1,1) | ||
self.Y = yv.reshape(-1,1) | ||
self.Z = self.X*0+1 # The mesh will be located on Z = 1 plane | ||
|
||
def getPlane(self): | ||
|
||
return np.concatenate(([self.X],[self.Y],[self.Z],[self.X*0+1]))[:,:,0] |