https://www.kaggle.com/competitions/predict-ai-model-runtime/
For discussion, please refer to:
https://www.kaggle.com/competitions/predict-ai-model-runtime/discussion/456084
- GPU: 2x Nvidia Quadro RTX 8000, each with VRAM 48 GB
- CPU: Intel® Xeon(R) Gold 6240 CPU @ 2.60GHz, 72 cores
- Memory: 376 GB RAM
- ubuntu 18.04.5 LTS
- Install Python >=3.10.9
- Install requirements.txt in the python environment
- Set up the directory structure as shown below.
└── solution
├── src
├── results
├── data
| ├── predict-ai-model-runtime
| ├── sample_submission.csv
│ ├── npz_all
│ ├── npz
│ ├── layout
│ │ ├── nlp
│ │ │ ├── default : train/valid/test
│ │ │ ├── random : train/valid/test
│ │ ├── xla
│ │ ├── default : train/valid/test
│ │ ├── random : train/valid/test
| ├── tile
| ├── xla : train/valid/test
├── LICENSE
├── README.md
- The dataset "predict-ai-model-runtime" can be downloaded from Kaggle:
https://www.kaggle.com/competitions/predict-ai-model-runtime/data
Please run the following python scripts to output the model files
>> python src/1a_run_res_graphsage4_layout.py
output model:
- results/final-01/model/4x-graphsage-pair2/layout/nlp-default/checkpoint/swa.pth
- results/final-01/model/4x-graphsage-pair2/layout/nlp-random/checkpoint/swa.pth
- results/final-01/model/4x-graphsage-pair2/layout/xla-default/checkpoint/swa.pth
- results/final-01/model/4x-graphsage-pair2/layout/xla-random/checkpoint/swa.pth
>> python src/1b_run_res_gin4_layout.py
output model:
- results/final-01/model/4x-gin-pair2/layout/xla-default/checkpoint/swa.pth
>> python src/2_run_res_gatconv4_tile.py
output model:
- results/final-01/model/4x-gatconv-listmle/tile/xla/checkpoint/00010013.pth
Local validation results are also output:
- 4x-graphsage-pair2
opa | kendall_tau | |
---|---|---|
nlp-default | 0.76969 | 0.53938 |
nlp-random | 0.96327 | 0.92654 |
xla-default | 0.72754 | 0.45508 |
xla-random | 0.83563 | 0.67127 |
- 4x-gin-pair2
opa | kendall_tau | |
---|---|---|
xla-default | 0.72978 | 0.45957 |
- 2_run_res_gatconv4_tile
slowndown1 | slowndown5 | slowndown10 | |
---|---|---|---|
xla | 0.89052 | 0.97462 | 0.98351 |
Please run the following script:
>> python src/3_run_make_kaggle_submission.py
output file:
- results/final-01/submission_06.csv
public lb | private lb | |
---|---|---|
submission_06.csv | 0.69424 | 0.70549 |
- Reference results can be found in the zip file "final-01.zip". It includes the weight files, train/validation logs.
- Please download from share google drive: https://drive.google.com/drive/folders/13zgzaB-kl9CnPcXfibCfxnUY5WtHJLbQ?usp=sharing
- This project is licensed under the MIT License - see the LICENSE file for details.
"We extend our thanks to HP for providing the Z8-G4 Data Science Workstation, which empowered our deep learning experiments. The high computational power and large GPU memory enabled us to design our models swiftly."