Skip to content

hengck23/solution-predict-ai-model-runtime

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Kaggle Competition Solution (6th)

Google - Fast or Slow? Predict AI Model Runtime

https://www.kaggle.com/competitions/predict-ai-model-runtime/

For discussion, please refer to:
https://www.kaggle.com/competitions/predict-ai-model-runtime/discussion/456084

1. Hardware

  • GPU: 2x Nvidia Quadro RTX 8000, each with VRAM 48 GB
  • CPU: Intel® Xeon(R) Gold 6240 CPU @ 2.60GHz, 72 cores
  • Memory: 376 GB RAM

2. OS

  • ubuntu 18.04.5 LTS

3. Set Up Environment

  • Install Python >=3.10.9
  • Install requirements.txt in the python environment
  • Set up the directory structure as shown below.
└── solution
    ├── src 
    ├── results
    ├── data
    |   ├── predict-ai-model-runtime
    |       ├── sample_submission.csv
    │       ├── npz_all
    │            ├── npz
    │                 ├── layout 
    │                 │     ├── nlp
    │                 │     │    ├── default : train/valid/test
    │                 │     │    ├── random : train/valid/test
    │                 │     ├── xla
    │                 │          ├── default : train/valid/test
    │                 │          ├── random : train/valid/test
    |                 ├── tile
    |                       ├── xla : train/valid/test      
    ├── LICENSE 
    ├── README.md 

4. Training the model

Warning !!! training output will be overwritten to the "solution/results" folder

Please run the following python scripts to output the model files

>> python src/1a_run_res_graphsage4_layout.py
output model:
- results/final-01/model/4x-graphsage-pair2/layout/nlp-default/checkpoint/swa.pth
- results/final-01/model/4x-graphsage-pair2/layout/nlp-random/checkpoint/swa.pth
- results/final-01/model/4x-graphsage-pair2/layout/xla-default/checkpoint/swa.pth
- results/final-01/model/4x-graphsage-pair2/layout/xla-random/checkpoint/swa.pth

>> python src/1b_run_res_gin4_layout.py
output model:
- results/final-01/model/4x-gin-pair2/layout/xla-default/checkpoint/swa.pth

>> python src/2_run_res_gatconv4_tile.py
output model:
- results/final-01/model/4x-gatconv-listmle/tile/xla/checkpoint/00010013.pth

Local validation results are also output:

  • 4x-graphsage-pair2
opa kendall_tau
nlp-default 0.76969 0.53938
nlp-random 0.96327 0.92654
xla-default 0.72754 0.45508
xla-random 0.83563 0.67127
  • 4x-gin-pair2
opa kendall_tau
xla-default 0.72978 0.45957
  • 2_run_res_gatconv4_tile
slowndown1 slowndown5 slowndown10
xla 0.89052 0.97462 0.98351

5. Submission csv

Please run the following script:

>> python src/3_run_make_kaggle_submission.py
output file:
- results/final-01/submission_06.csv
public lb private lb
submission_06.csv 0.69424 0.70549

6. Reference trained models and validation results

Authors

License

  • This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgement

"We extend our thanks to HP for providing the Z8-G4 Data Science Workstation, which empowered our deep learning experiments. The high computational power and large GPU memory enabled us to design our models swiftly."

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages