![](https://private-user-images.githubusercontent.com/100853494/312098218-cebecf35-bdd6-459c-8a1e-bad7c9a8037b.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk4MTIxOTksIm5iZiI6MTczOTgxMTg5OSwicGF0aCI6Ii8xMDA4NTM0OTQvMzEyMDk4MjE4LWNlYmVjZjM1LWJkZDYtNDU5Yy04YTFlLWJhZDdjOWE4MDM3Yi5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjE3JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxN1QxNzA0NTlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT04MzJjMGU5MWRjNGY2Y2U1ZDM5NGEwYmJjYjE3M2NjODQyODQ3NzYzZGFhM2Q3MDc1YzFiYWIzZWM5YTYwNThiJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.4sEBg0heq8Hwl1mWLDwFy1Kt84rXadcvU2mYuy1BMX8)
This project introduces a novel approach to Cosmos data analysis, diverging from conventional techniques reliant on embeddings and vector databases. The methodology employed involves a TFID retriever, complemented by a meticulous long context reordering and a flash reranker. This innovative approach results in a substantial improvement in retrieval speed, particularly noteworthy with a parameter setting of k=8, while concurrently achieving accuracy levels closely aligned with those obtained through vector databases.
S.No | RAG with VectorDB | RAG without VectorDB | |
---|---|---|---|
1. | Methodology | Vector Embeddings | TFID Retriever + LC Reorder + FlashReRanker |
2. | Storage Requirements | Higher storage demand with additional computation | Minimal storage needed solely for the data |
3. | Retrieval Speed | Rapid retrieval with VectorDB | Moderately fast retrieval without VectorDB |
4. | Retrieval Accuracy | Achieves k <= 5 | Attains k <= 8 |
![](https://private-user-images.githubusercontent.com/100853494/312141129-e2265159-9ec7-4c88-85c9-a2f18ccf14ef.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk4MTIxOTksIm5iZiI6MTczOTgxMTg5OSwicGF0aCI6Ii8xMDA4NTM0OTQvMzEyMTQxMTI5LWUyMjY1MTU5LTllYzctNGM4OC04NWM5LWEyZjE4Y2NmMTRlZi5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjE3JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxN1QxNzA0NTlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1iODJlMzVjYmJiNzY3NTQ1MDVmZGY1OGZkMzFlMWIwZjYzNWE0MDE1OGEwYTQ4OGE0MTJjZDYzMjFkMjRlYTUwJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.uxl2ladJ9jdj7UL2PO8ocYNkNnXKa01-0Rx83G287-I)
Special thanks to Prithiviraj Damodaran for developing a light-weight and powerful re-ranker.