This repo is the implementation for Deep learning based efficient ship detection from drone-captured images for maritime surveillance - ScienceDirect.
YOLOv5-ODConvNeXt is an improved version of YOLOv5s for ship detection on drone-captured images.
git clone https://github.com/hariv24/YOLOv5-ODConvNeXt/tree/main # clone
cd YOLOv5-ODConvNeXt
pip install -r requirements.txt # install
A trained YOLOv5-ODConvNeXt model is provided in checkpoints/yolov5-odconvnext.pt
,the detection results are saved in runs/detect
python detect.py
--weights checkpoints/yolov5-odconvnext.pt
--source data/images
--line-thickness 2
Two demo outputs are shown below.
The configuration of our model is in models/yolov5-odconvnext.yaml
python train.py
--data data/MyShip3200.yaml
--cfg models/yolov5-odconvnext.yaml
--hyp data/hyps/hyp.scratch-low.yaml
--epoch 500
--batch-size 32
--device 0
--workers 8
Link: https://pan.baidu.com/s/1CeNyZZVp6RLDbIEdBikmGQ
Access Key: cuc6
Thanks to their great works.