forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
AdamW operator (Fixing Weight Decay Regularization in Adam) (apache#1…
…3728) * tests * remove optimizer and move op to contrib * rename parameter
- Loading branch information
1 parent
68a30bd
commit 948d453
Showing
4 changed files
with
232 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2016 by Contributors | ||
* \file optimizer_op-inl.h | ||
* \brief Optimizer operators | ||
* \author Haibin Lin | ||
*/ | ||
#ifndef MXNET_OPERATOR_CONTRIB_ADAMW_INL_H_ | ||
#define MXNET_OPERATOR_CONTRIB_ADAMW_INL_H_ | ||
#include <dmlc/parameter.h> | ||
#include <mxnet/operator.h> | ||
#include <mxnet/operator_util.h> | ||
#include <mxnet/op_attr_types.h> | ||
#include <mshadow/base.h> | ||
#include <nnvm/op.h> | ||
#include <nnvm/op_attr_types.h> | ||
#include <vector> | ||
#include "../operator_common.h" | ||
#include "../mshadow_op.h" | ||
#include "../elemwise_op_common.h" | ||
#include "../mxnet_op.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
struct AdamWParam : public dmlc::Parameter<AdamWParam> { | ||
float lr; | ||
float beta1; | ||
float beta2; | ||
float epsilon; | ||
float wd; | ||
float eta; | ||
float rescale_grad; | ||
float clip_gradient; | ||
DMLC_DECLARE_PARAMETER(AdamWParam) { | ||
DMLC_DECLARE_FIELD(lr) | ||
.describe("Learning rate"); | ||
DMLC_DECLARE_FIELD(beta1) | ||
.set_default(0.9f) | ||
.describe("The decay rate for the 1st moment estimates."); | ||
DMLC_DECLARE_FIELD(beta2) | ||
.set_default(0.999f) | ||
.describe("The decay rate for the 2nd moment estimates."); | ||
DMLC_DECLARE_FIELD(epsilon) | ||
.set_default(1e-8f) | ||
.describe("A small constant for numerical stability."); | ||
DMLC_DECLARE_FIELD(wd) | ||
.set_default(0.0f) | ||
.describe("Weight decay augments the objective function with a " | ||
"regularization term that penalizes large weights. " | ||
"The penalty scales with the square of the magnitude of each weight."); | ||
DMLC_DECLARE_FIELD(eta) | ||
.describe("Learning rate schedule multiplier"); | ||
DMLC_DECLARE_FIELD(rescale_grad) | ||
.set_default(1.0f) | ||
.describe("Rescale gradient to grad = rescale_grad*grad."); | ||
DMLC_DECLARE_FIELD(clip_gradient) | ||
.set_default(-1.0f) | ||
.describe("Clip gradient to the range of [-clip_gradient, clip_gradient] " | ||
"If clip_gradient <= 0, gradient clipping is turned off. " | ||
"grad = max(min(grad, clip_gradient), -clip_gradient)."); | ||
} | ||
}; | ||
|
||
/* | ||
* \brief adam_w update. | ||
*/ | ||
template<typename xpu> | ||
inline void AdamWUpdate(const nnvm::NodeAttrs& attrs, | ||
const OpContext &ctx, | ||
const std::vector<TBlob> &inputs, | ||
const std::vector<OpReqType> &req, | ||
const std::vector<TBlob> &outputs) { | ||
using namespace mshadow; | ||
using namespace mshadow::expr; | ||
using namespace mshadow_op; | ||
const AdamWParam& param = nnvm::get<AdamWParam>(attrs.parsed); | ||
Stream<xpu>* s = ctx.get_stream<xpu>(); | ||
MSHADOW_REAL_TYPE_SWITCH(inputs[0].type_flag_, DType, { | ||
Tensor<xpu, 2, DType> weight = inputs[0].FlatTo2D<xpu, DType>(s); | ||
Tensor<xpu, 2, DType> grad = inputs[1].FlatTo2D<xpu, DType>(s); | ||
Tensor<xpu, 2, DType> mean = inputs[2].FlatTo2D<xpu, DType>(s); | ||
Tensor<xpu, 2, DType> var = inputs[3].FlatTo2D<xpu, DType>(s); | ||
Tensor<xpu, 2, DType> out = outputs[0].FlatTo2D<xpu, DType>(s); | ||
|
||
grad = scalar<DType>(param.rescale_grad) * grad; | ||
if (param.clip_gradient >= 0.0f) { | ||
mean = scalar<DType>(param.beta1)*mean + scalar<DType>(1.f-param.beta1) * | ||
F<clip>(grad, DType(param.clip_gradient)); | ||
var = scalar<DType>(param.beta2)*var + scalar<DType>(1.f-param.beta2)*F<square>( | ||
F<clip>(grad, DType(param.clip_gradient))); | ||
} else { | ||
mean = scalar<DType>(param.beta1)*mean + scalar<DType>(1.f-param.beta1) * grad; | ||
var = scalar<DType>(param.beta2)*var + scalar<DType>(1.f-param.beta2) * F<square>(grad); | ||
} | ||
Assign(out, req[0], | ||
weight - | ||
scalar<DType>(param.eta) * (scalar<DType>(param.lr) * | ||
mean / (F<square_root>(var) + scalar<DType>(param.epsilon)) + | ||
(scalar<DType>(param.wd) * weight))); | ||
}); | ||
} | ||
|
||
} // namespace op | ||
} // namespace mxnet | ||
|
||
#endif // MXNET_OPERATOR_CONTRIB_ADAMW_INL_H_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2016 by Contributors | ||
* \file optimizer_op.cc | ||
* \brief Optimizer operators | ||
* \author Haibin Lin | ||
*/ | ||
#include "./adamw-inl.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
DMLC_REGISTER_PARAMETER(AdamWParam); | ||
|
||
NNVM_REGISTER_OP(_contrib_adamw_update) | ||
.describe(R"code(Update function for AdamW optimizer. AdamW is seen as a modification of | ||
Adam by decoupling the weight decay from the optimization steps taken w.r.t. the loss function. | ||
Adam update consists of the following steps, where g represents gradient and m, v | ||
are 1st and 2nd order moment estimates (mean and variance). | ||
.. math:: | ||
g_t = \nabla J(W_{t-1})\\ | ||
m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t\\ | ||
v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2\\ | ||
W_t = W_{t-1} - \eta_t (\alpha \frac{ m_t }{ \sqrt{ v_t } + \epsilon } + wd W_{t-1}) | ||
It updates the weights using:: | ||
m = beta1*m + (1-beta1)*grad | ||
v = beta2*v + (1-beta2)*(grad**2) | ||
w -= eta * (learning_rate * m / (sqrt(v) + epsilon) + w * wd) | ||
)code" ADD_FILELINE) | ||
.set_num_inputs(4) | ||
.set_num_outputs(1) | ||
.set_attr_parser(ParamParser<AdamWParam>) | ||
.set_attr<nnvm::FInferShape>("FInferShape", ElemwiseShape<4, 1>) | ||
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<4, 1>) | ||
.set_attr<nnvm::FMutateInputs>("FMutateInputs", | ||
[](const nnvm::NodeAttrs& attrs) { | ||
return std::vector<uint32_t>{2, 3}; | ||
}) | ||
.set_attr<FCompute>("FCompute<cpu>", AdamWUpdate<cpu>) | ||
.add_argument("weight", "NDArray-or-Symbol", "Weight") | ||
.add_argument("grad", "NDArray-or-Symbol", "Gradient") | ||
.add_argument("mean", "NDArray-or-Symbol", "Moving mean") | ||
.add_argument("var", "NDArray-or-Symbol", "Moving variance") | ||
.add_arguments(AdamWParam::__FIELDS__()); | ||
|
||
} // namespace op | ||
} // namespace mxnet |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2018 by Contributors | ||
* \file adamw.cu | ||
* \brief Optimizer operators | ||
* \author Haibin Lin | ||
*/ | ||
#include "./adamw-inl.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
NNVM_REGISTER_OP(_contrib_adamw_update) | ||
.set_attr<FCompute>("FCompute<gpu>", AdamWUpdate<gpu>); | ||
|
||
} // namespace op | ||
} // namespace mxnet |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters