Skip to content
This repository has been archived by the owner on Jan 20, 2022. It is now read-only.

[Examples] Add TensorFlow examples - ResNet50 and BERT models #2530

Closed
wants to merge 8 commits into from
60 changes: 60 additions & 0 deletions Examples/tensorflow/BERT/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# BERT sample for Tensorflow

GRAPHENEDIR ?= ../../..
SGX_SIGNER_KEY ?= $(GRAPHENEDIR)/Pal/src/host/Linux-SGX/signer/enclave-key.pem

include $(GRAPHENEDIR)/Scripts/Makefile.configs

ifeq ($(DEBUG),1)
GRAPHENE_LOG_LEVEL = debug
else
GRAPHENE_LOG_LEVEL = error
endif

.PHONY: all
all: python.manifest
ifeq ($(SGX),1)
all: python.manifest.sgx python.sig python.token
endif

BERT_DATASET = https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip
SQUAAD_DATASET = https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json
CHECKPOINTS = https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/bert_large_checkpoints.zip
BERT_INT8_MODEL = https://storage.googleapis.com/intel-optimized-tensorflow/models/r2.5-icx-b631821f/asymmetric_per_channel_bert_int8.pb

collateral:
apt install unzip
test -d models || git clone https://github.com/IntelAI/models.git
mkdir -p data
test -f data/wwm_uncased_L-24_H-1024_A-16.zip || wget $(BERT_DATASET) -P data/
test -d data/wwm_uncased_L-24_H-1024_A-16 || unzip data/wwm_uncased_L-24_H-1024_A-16.zip -d data
test -f data/wwm_uncased_L-24_H-1024_A-16/dev-v1.1.json || wget $(SQUAAD_DATASET) -P data/wwm_uncased_L-24_H-1024_A-16
test -f data/bert_large_checkpoints.zip || wget $(CHECKPOINTS) -P data/
test -d data/bert_large_checkpoints || unzip data/bert_large_checkpoints.zip -d data
test -f data/asymmetric_per_channel_bert_int8.pb || wget $(BERT_INT8_MODEL) -P data/

python.manifest: python.manifest.template collateral
graphene-manifest \
-Dlog_level=$(GRAPHENE_LOG_LEVEL) \
-Darch_libdir=$(ARCH_LIBDIR) \
-Dentrypoint=$(realpath $(shell sh -c "command -v python3")) \
-Dpythondistpath=$(PYTHONDISTPATH) \
$< >$@

python.manifest.sgx: python.manifest
graphene-sgx-sign \
--key $(SGX_SIGNER_KEY) \
--manifest $< -output $@

python.sig: python.manifest.sgx

python.token: python.sig
graphene-sgx-get-token -output $@ -sig $<

.PHONY: clean
clean:
$(RM) *.manifest *.manifest.sgx *.token *.sig

.PHONY: distclean
distclean: clean
$(RM) -r models/ data/
77 changes: 77 additions & 0 deletions Examples/tensorflow/BERT/python.manifest.template
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
libos.entrypoint = "{{ entrypoint }}"
loader.preload = "file:{{ graphene.libos }}"

# Graphene log level
loader.log_level = "{{ log_level }}"

# Read application arguments directly from the command line. Don't use this on production!
loader.insecure__use_cmdline_argv = true

# Propagate environment variables from the host. Don't use this on production!
loader.insecure__use_host_env = true

# Disable address space layout randomization. Don't use this on production!
loader.insecure__disable_aslr = true

# Update Library Path - overwrites environment variable
loader.env.LD_LIBRARY_PATH = "{{ python.stdlib }}/lib:/lib:{{ arch_libdir }}:/usr/lib:/usr/{{ arch_libdir }}"

# Additional memory for Graphene's internal use
loader.pal_internal_mem_size = "512M"

# Default glibc files, mounted from graphene's Runtime directory
fs.mount.lib.type = "chroot"
fs.mount.lib.path = "/lib"
fs.mount.lib.uri = "file:{{ graphene.runtimedir() }}"

# More libraries required by Tensorflow
fs.mount.lib2.type = "chroot"
fs.mount.lib2.path = "{{ arch_libdir }}"
fs.mount.lib2.uri = "file:{{ arch_libdir }}"

fs.mount.usr.type = "chroot"
fs.mount.usr.path = "/usr"
fs.mount.usr.uri = "file:/usr"

fs.mount.pyhome.type = "chroot"
fs.mount.pyhome.path = "{{ python.stdlib }}"
fs.mount.pyhome.uri = "file:{{ python.stdlib }}"

fs.mount.pydisthome.type = "chroot"
fs.mount.pydisthome.path = "{{ python.distlib }}"
fs.mount.pydisthome.uri = "file:{{ python.distlib }}"

fs.mount.pydistpath.type = "chroot"
fs.mount.pydistpath.path = "{{ pythondistpath }}"
fs.mount.pydistpath.uri = "file:{{ pythondistpath }}"

fs.mount.tmp.type = "chroot"
fs.mount.tmp.path = "/tmp"
fs.mount.tmp.uri = "file:/tmp"

fs.mount.etc.type = "chroot"
fs.mount.etc.path = "/etc"
fs.mount.etc.uri = "file:/etc"

# SGX general options
sgx.enclave_size = "32G"
sgx.thread_num = 256
sgx.preheat_enclave = true
sgx.nonpie_binary = true

# SGX trusted files
sgx.trusted_files.runtime = "file:{{ graphene.runtimedir() }}/"
sgx.trusted_files.arch_libdir = "file:{{ arch_libdir }}/"
sgx.trusted_files.usr_arch_libdir = "file:/usr/{{ arch_libdir }}/"
sgx.trusted_files.python = "file:{{ entrypoint }}"
sgx.trusted_files.pyhome = "file:{{ python.stdlib }}"
sgx.trusted_files.pydisthome = "file:{{ python.distlib }}"
sgx.trusted_files.pydistpath = "file:{{ pythondistpath }}"

# SGX allowed files
sgx.allowed_files.tmp = "file:/tmp/"
sgx.allowed_files.etc = "file:/etc/"
sgx.allowed_files.output = "file:output/"
sgx.allowed_files.scripts = "file:models/"
sgx.allowed_files.dataDir = "file:data/"
sgx.allowed_files.keras = "file:root/.keras/keras.json"
6 changes: 6 additions & 0 deletions Examples/tensorflow/BERT/root/.keras/keras.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
{
"floatx": "float32",
"epsilon": 1e-07,
"backend": "tensorflow",
"image_data_format": "channels_last"
}
176 changes: 176 additions & 0 deletions Examples/tensorflow/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
## Inference on TensorFlow BERT and ResNet50 models
This directory contains steps and artifacts to run inference with TensorFlow BERT and ResNet50
sample workloads on Graphene. Specifically, both these examples use pre-trained models to run
inference.

### Bidirectional Encoder Representations from Transformers (BERT):
BERT is a method of pre-training language representations and then use that trained model for
downstream NLP tasks like 'question answering'. BERT is an unsupervised, deeply birectional system
for pre-training NLP.
In this BERT sample, we use 'BERT-Large, Uncased (Whole Word Masking)' model and perform int8
inference. More details about BERT can be found at https://github.com/google-research/bert.

### Residual Network (ResNet):
ResNet50 is a convolutional neural network that is 50 layers deep.
In this ResNet50(v1.5) sample, we use a pre-trained model and perform int8 inference.
More details about ResNet50 can be found at https://github.com/IntelAI/models/tree/icx-launch-public/benchmarks/image_recognition/tensorflow/resnet50v1_5.

## Pre-requisites
- Upgrade pip/pip3.
- Install tensorflow using ``pip install intel-tensorflow-avx512==2.4.0`` or by downloading whl
package from https://pypi.org/project/intel-tensorflow-avx512/2.4.0/#files.

## Build BERT or ResNet50 samples
- To build BERT sample, do ``cd BERT`` or to build ResNet50 sample, do ``cd ResNet50``.
- To clean the sample, do ``make clean``
- To clean and remove downloaded models and datasets, do ``make distclean``
- To build the non-SGX version, do ``make PYTHONDISTPATH=path_to_python_dist_packages/``
- To build the SGX version, do ``make PYTHONDISTPATH=path_to_python_dist_packages/ SGX=1``
- Typically, path_to_python_dist_packages is '/usr/local/lib/python3.6/dist-packages', but can
change based on python's installation directory.
- Keras settings are configured in the file root/.keras/keras.json. It is configured to use
tensorflow as backend.

**WARNING:** Building BERT sample downloads about 5GB of data.

## Run inference on BERT model
- To run int8 inference on graphene-sgx (SGX version)
```
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 graphene-sgx \
./python models/models/language_modeling/tensorflow/bert_large/inference/run_squad.py \
--init_checkpoint=data/bert_large_checkpoints/model.ckpt-3649 \
--vocab_file=data/wwm_uncased_L-24_H-1024_A-16/vocab.txt \
--bert_config_file=data/wwm_uncased_L-24_H-1024_A-16/bert_config.json \
--predict_file=data/wwm_uncased_L-24_H-1024_A-16/dev-v1.1.json \
--precision=int8 \
--output_dir=output/bert-squad-output \
--predict_batch_size=32 \
--experimental_gelu=True \
--optimized_softmax=True \
--input_graph=data/asymmetric_per_channel_bert_int8.pb \
--do_predict=True --mode=benchmark \
--inter_op_parallelism_threads=1 \
--intra_op_parallelism_threads=36
```
- To run int8 inference on graphene-direct (non-SGX version)
```
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 \
graphene-direct ./python models/models/language_modeling/tensorflow/bert_large/inference/run_squad.py \
--init_checkpoint=data/bert_large_checkpoints/model.ckpt-3649 \
--vocab_file=data/wwm_uncased_L-24_H-1024_A-16/vocab.txt \
--bert_config_file=data/wwm_uncased_L-24_H-1024_A-16/bert_config.json \
--predict_file=data/wwm_uncased_L-24_H-1024_A-16/dev-v1.1.json \
--precision=int8 \
--output_dir=output/bert-squad-output \
--predict_batch_size=32 \
--experimental_gelu=True \
--optimized_softmax=True \
--input_graph=data/asymmetric_per_channel_bert_int8.pb \
--do_predict=True \
--mode=benchmark \
--inter_op_parallelism_threads=1 \
--intra_op_parallelism_threads=36
```
- To run int8 inference on native baremetal (outside Graphene)
```
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 python3.6 \
models/models/language_modeling/tensorflow/bert_large/inference/run_squad.py \
--init_checkpoint=data/bert_large_checkpoints/model.ckpt-3649 \
--vocab_file=data/wwm_uncased_L-24_H-1024_A-16/vocab.txt \
--bert_config_file=data/wwm_uncased_L-24_H-1024_A-16/bert_config.json \
--predict_file=data/wwm_uncased_L-24_H-1024_A-16/dev-v1.1.json \
--precision=int8 --output_dir=output/bert-squad-output \
--predict_batch_size=32 \
--experimental_gelu=True \
--optimized_softmax=True \
--input_graph=data/asymmetric_per_channel_bert_int8.pb \
--do_predict=True \
--mode=benchmark \
--inter_op_parallelism_threads=1 \
--intra_op_parallelism_threads=36
```
- Above commands are for a 36 core system. Please set the following options accordingly for optimal
performance:
- Assuming that X is the number of cores per socket, set `OMP_NUM_THREADS=X`
and `intra_op_parallelism_threads=X`.
- Specify the whole range of cores available on one of the sockets in `taskset`.
- If hyperthreading is enabled: use ``KMP_AFFINITY=granularity=fine,verbose,compact,1,0``
- If hyperthreading is disabled: use ``KMP_AFFINITY=granularity=fine,verbose,compact``
- Note that `OMP_NUM_THREADS` sets the maximum number of threads to
use for OpenMP parallel regions, and `KMP_AFFINITY` binds OpenMP threads
to physical processing units.

**NOTE:** To get number of cores per socket, do ``lscpu | grep 'Core(s) per socket'``.

## Run inference on ResNet50 model
- To run inference on graphene-sgx (SGX version)
```
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 graphene-sgx \
./python models/models/image_recognition/tensorflow/resnet50v1_5/inference/eval_image_classifier_inference.py \
--input-graph=resnet50v1_5_int8_pretrained_model.pb \
--num-inter-threads=1 \
--num-intra-threads=36 \
--batch-size=32 \
--warmup-steps=50 \
--steps=500
```
- To run inference on graphene-direct (non-SGX version)
```
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 graphene-direct \
./python models/models/image_recognition/tensorflow/resnet50v1_5/inference/eval_image_classifier_inference.py \
--input-graph=resnet50v1_5_int8_pretrained_model.pb \
--num-inter-threads=1 \
--num-intra-threads=36 \
--batch-size=32 \
--warmup-steps=50 \
--steps=500
```
- To run inference on native baremetal (outside Graphene)
```
OMP_NUM_THREADS=36 KMP_AFFINITY=granularity=fine,verbose,compact,1,0 taskset -c 0-35 python3.6 \
models/models/image_recognition/tensorflow/resnet50v1_5/inference/eval_image_classifier_inference.py \
--input-graph=resnet50v1_5_int8_pretrained_model.pb \
--num-inter-threads=1 \
--num-intra-threads=36 \
--batch-size=32 \
--warmup-steps=50 \
--steps=500
```
- Above commands are for a 36 core system. Please set the following options accordingly for optimal
performance:
- Assuming that X is the number of cores per socket, set `OMP_NUM_THREADS=X`
and `num_intra_threads=X`.
- Specify the whole range of cores available on one of the sockets in `taskset`.
- If hyperthreading is enabled: use ``KMP_AFFINITY=granularity=fine,verbose,compact,1,0``
- If hyperthreading is disabled: use ``KMP_AFFINITY=granularity=fine,verbose,compact``
- Note that `OMP_NUM_THREADS` sets the maximum number of threads to
use for OpenMP parallel regions, and `KMP_AFFINITY` binds OpenMP threads
to physical processing units.
- The options batch-size, warmup-steps and steps can be varied.

**NOTE:** To get number of cores per socket, do ``lscpu | grep 'Core(s) per socket'``.

## Performance considerations
- Linux systems have CPU frequency scaling governor that helps the system to scale the CPU frequency
to achieve best performance or to save power based on the requirement.
To set the CPU frequency scaling governor to performance mode:

- ``for ((i=0; i<$(nproc); i++)); do echo 'performance' > /sys/devices/system/cpu/cpu$i/cpufreq/scaling_governor; done``

- Preheat manifest option pre-faults the enclave memory and moves the performance penalty to
graphene-sgx invocation (before the workload starts execution).
To use preheat option, add ``sgx.preheat_enclave = true`` to the manifest template.
- TCMalloc and mimalloc are memory allocator libraries from Google and Microsoft that can help
improve performance significantly based on the workloads. At any point, only one of these
allocators can be used.
- TCMalloc (Please update the binary location and name if different from default)
- Install tcmalloc: ``sudo apt-get install google-perftools``
- Add the following lines in the manifest template and rebuild the sample.
- ``loader.env.LD_PRELOAD = "/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4"``
- ``sgx.trusted_files.libtcmalloc = "file:/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4"``
- ``sgx.trusted_files.libunwind = "file:/usr/lib/x86_64-linux-gnu/libunwind.so.8"``
- mimalloc (Please update the binary location and name if different from default)
- Install mimalloc using the steps from https://github.com/microsoft/mimalloc
- Add the following lines in the manifest template and rebuild the sample.
- ``loader.env.LD_PRELOAD = "/usr/local/lib/mimalloc-1.7/libmimalloc.so.1.7"``
- ``sgx.trusted_files.libmimalloc = "file:/usr/local/lib/mimalloc-1.7/libmimalloc.so.1.7"``
49 changes: 49 additions & 0 deletions Examples/tensorflow/ResNet50/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# ResNet50 sample for Tensorflow

GRAPHENEDIR ?= ../../..
SGX_SIGNER_KEY ?= $(GRAPHENEDIR)/Pal/src/host/Linux-SGX/signer/enclave-key.pem

include $(GRAPHENEDIR)/Scripts/Makefile.configs

ifeq ($(DEBUG),1)
GRAPHENE_LOG_LEVEL = debug
else
GRAPHENE_LOG_LEVEL = error
endif

.PHONY: all collateral
all: python.manifest
ifeq ($(SGX),1)
all: python.manifest.sgx python.sig python.token
endif

collateral:
test -d models || git clone https://github.com/IntelAI/models.git
test -f resnet50v1_5_int8_pretrained_model.pb || wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/resnet50v1_5_int8_pretrained_model.pb

python.manifest: python.manifest.template collateral
graphene-manifest \
-Dlog_level=$(GRAPHENE_LOG_LEVEL) \
-Darch_libdir=$(ARCH_LIBDIR) \
-Dentrypoint=$(realpath $(shell sh -c "command -v python3")) \
-Dpythondistpath=$(PYTHONDISTPATH) \
$< >$@

python.manifest.sgx: python.manifest
graphene-sgx-sign \
--key $(SGX_SIGNER_KEY) \
--manifest python.manifest \
--output $@

python.sig: python.manifest.sgx

python.token: python.sig
graphene-sgx-get-token -output $@ -sig $<

.PHONY: clean
clean:
$(RM) *.manifest *.manifest.sgx *.token *.sig

.PHONY: distclean
distclean: clean
$(RM) -r models/ resnet50v1_5_int8_pretrained_model.pb
Loading