Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 31 additions & 29 deletions third_party/bigframes_vendored/sklearn/linear_model/_logistic.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,35 +23,37 @@
class LogisticRegression(LinearClassifierMixin, BaseEstimator):
"""Logistic Regression (aka logit, MaxEnt) classifier.

>>> from bigframes.ml.linear_model import LogisticRegression
>>> import bigframes.pandas as bpd
>>> X = bpd.DataFrame({ \
"feature0": [20, 21, 19, 18], \
"feature1": [0, 1, 1, 0], \
"feature2": [0.2, 0.3, 0.4, 0.5]})
>>> y = bpd.DataFrame({"outcome": [0, 0, 1, 1]})
>>> # Create the LogisticRegression
>>> model = LogisticRegression()
>>> model.fit(X, y)
LogisticRegression()
>>> model.predict(X) # doctest:+SKIP
predicted_outcome predicted_outcome_probs feature0 feature1 feature2
0 0 [{'label': 1, 'prob': 3.1895929877221615e-07} ... 20 0 0.2
1 0 [{'label': 1, 'prob': 5.662891265051953e-06} ... 21 1 0.3
2 1 [{'label': 1, 'prob': 0.9999917826885262} {'l... 19 1 0.4
3 1 [{'label': 1, 'prob': 0.9999999993659574} {'l... 18 0 0.5
4 rows × 5 columns

[4 rows x 5 columns in total]

>>> # Score the model
>>> score = model.score(X, y)
>>> score # doctest:+SKIP
precision recall accuracy f1_score log_loss roc_auc
0 1.0 1.0 1.0 1.0 0.000004 1.0
1 rows × 6 columns

[1 rows x 6 columns in total]
**Examples:**

>>> from bigframes.ml.linear_model import LogisticRegression
>>> import bigframes.pandas as bpd
>>> X = bpd.DataFrame({ \
"feature0": [20, 21, 19, 18], \
"feature1": [0, 1, 1, 0], \
"feature2": [0.2, 0.3, 0.4, 0.5]})
>>> y = bpd.DataFrame({"outcome": [0, 0, 1, 1]})
>>> # Create the LogisticRegression
>>> model = LogisticRegression()
>>> model.fit(X, y)
LogisticRegression()
>>> model.predict(X) # doctest:+SKIP
predicted_outcome predicted_outcome_probs feature0 feature1 feature2
0 0 [{'label': 1, 'prob': 3.1895929877221615e-07} ... 20 0 0.2
1 0 [{'label': 1, 'prob': 5.662891265051953e-06} ... 21 1 0.3
2 1 [{'label': 1, 'prob': 0.9999917826885262} {'l... 19 1 0.4
3 1 [{'label': 1, 'prob': 0.9999999993659574} {'l... 18 0 0.5
4 rows × 5 columns

[4 rows x 5 columns in total]

>>> # Score the model
>>> score = model.score(X, y)
>>> score # doctest:+SKIP
precision recall accuracy f1_score log_loss roc_auc
0 1.0 1.0 1.0 1.0 0.000004 1.0
1 rows × 6 columns

[1 rows x 6 columns in total]

Args:
optimize_strategy (str, default "auto_strategy"):
Expand Down