Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat: Add LIT methods for Pandas DataFrame and TensorFlow saved model. #874

Merged
merged 41 commits into from
Dec 16, 2021
Merged
Show file tree
Hide file tree
Changes from 34 commits
Commits
Show all changes
41 commits
Select commit Hold shift + click to select a range
5fae793
Created create_lit_dataset for pandas Dataframe
taiseiak Nov 23, 2021
9e30a2f
Merge branch 'googleapis:main' into explain-with-lit
taiseiak Nov 23, 2021
26d829e
Adding create_lit_model function for saved model.
taiseiak Nov 23, 2021
82042fe
Merge branch 'googleapis:main' into explain-with-lit
taiseiak Nov 23, 2021
53a8582
Merge branch 'googleapis:main' into explain-with-lit
taiseiak Nov 25, 2021
814a418
Fix tests and add lit model creation for 1in1out
taiseiak Nov 25, 2021
9b5a82e
Fix formatting and lint errors
taiseiak Nov 25, 2021
a6933c7
Add open_lit function.
taiseiak Nov 25, 2021
f4163d2
Add the set up and open lit method
taiseiak Nov 29, 2021
194b08a
Fix merge conflict
taiseiak Nov 29, 2021
895056d
Merge branch 'main' of https://github.com/googleapis/python-aiplatfor…
taiseiak Nov 29, 2021
6355175
Change names from dataset to created_dataset
taiseiak Nov 29, 2021
c8eaeb9
Change order of model and dataset for setup
taiseiak Nov 30, 2021
2a0d948
feat: fix long line in doc string
taiseiak Dec 1, 2021
5fbd99d
style: Remove comments of old code in test
taiseiak Dec 1, 2021
49fb2d8
Merge branch 'main' into explain-with-lit
taiseiak Dec 1, 2021
1f79c83
Merge branch 'main' into explain-with-lit
taiseiak Dec 2, 2021
8ef6a43
fix: Change OrderedDict typing to use strings to fix the python 3.6 e…
taiseiak Dec 2, 2021
97d1d20
Merge branch 'main' into explain-with-lit
taiseiak Dec 3, 2021
3bd0ead
Merge branch 'main' into explain-with-lit
sasha-gitg Dec 6, 2021
39fba85
Merge branch 'googleapis:main' into explain-with-lit
taiseiak Dec 7, 2021
c389f0a
refactor: Changing the classes to be defined outside of the functions.
taiseiak Dec 7, 2021
9f3d3f0
Update google/cloud/aiplatform/explain/lit.py
taiseiak Dec 7, 2021
2070cc8
fix: Fix Optional typing from PR review.
taiseiak Dec 7, 2021
3d6886a
Merge branch 'explain-with-lit' of https://github.com/taiseiak/python…
taiseiak Dec 7, 2021
520632f
fix: fixing lint errors and adding back OrderedDict into the typing.
taiseiak Dec 8, 2021
12862a8
Merge branch 'googleapis:main' into explain-with-lit
taiseiak Dec 8, 2021
fff0eac
Merge branch 'explain-with-lit' of https://github.com/taiseiak/python…
taiseiak Dec 8, 2021
935a538
test: Add test for open_lit function
taiseiak Dec 8, 2021
824a1ca
fix: Removing imports for lit methods in explain.
taiseiak Dec 8, 2021
31d2d10
test: Add tests for open_lit and set_up_and_open_lit, and refactor th…
taiseiak Dec 8, 2021
e7c9cfb
Merge branch 'googleapis:main' into explain-with-lit
taiseiak Dec 8, 2021
054d990
fix: Go back to OrderedDict forward reference and clean up imports in…
taiseiak Dec 9, 2021
f8925d6
fix: Change Dataframe to DataFrame
taiseiak Dec 9, 2021
9b695dc
docs: Add docstrings to the Vertex LIT class methods.
taiseiak Dec 14, 2021
d2874ca
Merge branch 'main' into explain-with-lit
taiseiak Dec 14, 2021
1e9e6e3
fix: Fix lint error
taiseiak Dec 14, 2021
484cc84
Merge branch 'main' into explain-with-lit
sasha-gitg Dec 14, 2021
0040429
Merge branch 'main' into explain-with-lit
sasha-gitg Dec 16, 2021
6ebdfc1
Merge branch 'main' into explain-with-lit
sasha-gitg Dec 16, 2021
cfc02da
Merge branch 'main' into explain-with-lit
sasha-gitg Dec 16, 2021
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
241 changes: 241 additions & 0 deletions google/cloud/aiplatform/explain/lit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
# -*- coding: utf-8 -*-

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List, Tuple, Union

try:
from lit_nlp.api import dataset as lit_dataset
from lit_nlp.api import model as lit_model
from lit_nlp.api import types as lit_types
from lit_nlp import notebook
except ImportError:
raise ImportError(
"LIT is not installed and is required to get Dataset as the return format. "
'Please install the SDK using "pip install python-aiplatform[lit]"'
)

try:
import tensorflow as tf
except ImportError:
raise ImportError(
"Tensorflow is not installed and is required to load saved model. "
'Please install the SDK using "pip install pip install python-aiplatform[lit]"'
)

try:
import pandas as pd
except ImportError:
raise ImportError(
"Pandas is not installed and is required to read the dataset. "
'Please install Pandas using "pip install python-aiplatform[lit]"'
)


class _VertexLitDataset(lit_dataset.Dataset):
"""LIT dataset class for the Vertex LIT integration.

This is used in the create_lit_dataset function.
"""

def __init__(
self,
dataset: pd.DataFrame,
column_types: "OrderedDict[str, lit_types.LitType]", # noqa: F821
):
"""Construct a VertexLitDataset.
Args:
dataset:
Required. A Pandas DataFrame that includes feature column names and data.
column_types:
Required. An OrderedDict of string names matching the columns of the dataset
as the key, and the associated LitType of the column.
"""
self._examples = dataset.to_dict(orient="records")
self._column_types = column_types

def spec(self):
taiseiak marked this conversation as resolved.
Show resolved Hide resolved
return dict(self._column_types)


class _VertexLitModel(lit_model.Model):
"""LIT model class for the Vertex LIT integration.

This is used in the create_lit_model function.
"""

def __init__(
self,
model: str,
input_types: "OrderedDict[str, lit_types.LitType]", # noqa: F821
output_types: "OrderedDict[str, lit_types.LitType]", # noqa: F821
):
"""Construct a VertexLitModel.
Args:
model:
Required. A string reference to a local TensorFlow saved model directory.
The model must have at most one input and one output tensor.
input_types:
Required. An OrderedDict of string names matching the features of the model
as the key, and the associated LitType of the feature.
output_types:
Required. An OrderedDict of string names matching the labels of the model
as the key, and the associated LitType of the label.
"""
self._loaded_model = tf.saved_model.load(model)
serving_default = self._loaded_model.signatures[
tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY
]
_, self._kwargs_signature = serving_default.structured_input_signature
self._output_signature = serving_default.structured_outputs

if len(self._kwargs_signature) != 1:
raise ValueError("Please use a model with only one input tensor.")

if len(self._output_signature) != 1:
raise ValueError("Please use a model with only one output tensor.")

self._input_types = input_types
self._output_types = output_types

def predict_minibatch(
self, inputs: List[lit_types.JsonDict]
) -> List[lit_types.JsonDict]:
taiseiak marked this conversation as resolved.
Show resolved Hide resolved
instances = []
for input in inputs:
instance = [input[feature] for feature in self._input_types]
instances.append(instance)
prediction_input_dict = {
next(iter(self._kwargs_signature)): tf.convert_to_tensor(instances)
}
prediction_dict = self._loaded_model.signatures[
tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY
](**prediction_input_dict)
predictions = prediction_dict[next(iter(self._output_signature))].numpy()
outputs = []
for prediction in predictions:
outputs.append(
{
label: value
for label, value in zip(self._output_types.keys(), prediction)
}
)
return outputs

def input_spec(self) -> lit_types.Spec:
return dict(self._input_types)
taiseiak marked this conversation as resolved.
Show resolved Hide resolved

def output_spec(self) -> lit_types.Spec:
taiseiak marked this conversation as resolved.
Show resolved Hide resolved
return self._output_types


def create_lit_dataset(
dataset: pd.DataFrame,
column_types: "OrderedDict[str, lit_types.LitType]", # noqa: F821
sasha-gitg marked this conversation as resolved.
Show resolved Hide resolved
) -> lit_dataset.Dataset:
"""Creates a LIT Dataset object.
Args:
dataset:
Required. A Pandas DataFrame that includes feature column names and data.
column_types:
Required. An OrderedDict of string names matching the columns of the dataset
as the key, and the associated LitType of the column.
Returns:
A LIT Dataset object that has the data from the dataset provided.
"""
return _VertexLitDataset(dataset, column_types)


def create_lit_model(
model: str,
input_types: "OrderedDict[str, lit_types.LitType]", # noqa: F821
output_types: "OrderedDict[str, lit_types.LitType]", # noqa: F821
sasha-gitg marked this conversation as resolved.
Show resolved Hide resolved
) -> lit_model.Model:
"""Creates a LIT Model object.
Args:
model:
Required. A string reference to a local TensorFlow saved model directory.
The model must have at most one input and one output tensor.
input_types:
Required. An OrderedDict of string names matching the features of the model
as the key, and the associated LitType of the feature.
output_types:
Required. An OrderedDict of string names matching the labels of the model
as the key, and the associated LitType of the label.
Returns:
A LIT Model object that has the same functionality as the model provided.
"""
return _VertexLitModel(model, input_types, output_types)


def open_lit(
models: Dict[str, lit_model.Model],
datasets: Dict[str, lit_dataset.Dataset],
open_in_new_tab: bool = True,
):
"""Open LIT from the provided models and datasets.
Args:
models:
Required. A list of LIT models to open LIT with.
input_types:
Required. A lit of LIT datasets to open LIT with.
open_in_new_tab:
Optional. A boolean to choose if LIT open in a new tab or not.
Raises:
ImportError if LIT is not installed.
"""
widget = notebook.LitWidget(models, datasets, open_in_new_tab=open_in_new_tab)
widget.render()


def set_up_and_open_lit(
dataset: Union[pd.DataFrame, lit_dataset.Dataset],
column_types: "OrderedDict[str, lit_types.LitType]", # noqa: F821
model: Union[str, lit_model.Model],
input_types: Union[List[str], Dict[str, lit_types.LitType]],
output_types: Union[str, List[str], Dict[str, lit_types.LitType]],
open_in_new_tab: bool = True,
) -> Tuple[lit_dataset.Dataset, lit_model.Model]:
"""Creates a LIT dataset and model and opens LIT.
Args:
dataset:
Required. A Pandas DataFrame that includes feature column names and data.
column_types:
Required. An OrderedDict of string names matching the columns of the dataset
as the key, and the associated LitType of the column.
model:
Required. A string reference to a TensorFlow saved model directory.
The model must have at most one input and one output tensor.
input_types:
Required. An OrderedDict of string names matching the features of the model
as the key, and the associated LitType of the feature.
output_types:
Required. An OrderedDict of string names matching the labels of the model
as the key, and the associated LitType of the label.
Returns:
A Tuple of the LIT dataset and model created.
Raises:
ImportError if LIT or TensorFlow is not installed.
ValueError if the model doesn't have only 1 input and output tensor.
"""
if not isinstance(dataset, lit_dataset.Dataset):
dataset = create_lit_dataset(dataset, column_types)

if not isinstance(model, lit_model.Model):
model = create_lit_model(model, input_types, output_types)

open_lit({"model": model}, {"dataset": dataset}, open_in_new_tab=open_in_new_tab)

return dataset, model
15 changes: 12 additions & 3 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,17 +36,25 @@
tensorboard_extra_require = ["tensorflow >=2.3.0, <=2.5.0"]
metadata_extra_require = ["pandas >= 1.0.0"]
xai_extra_require = ["tensorflow >=2.3.0, <=2.5.0"]
lit_extra_require = ["tensorflow >= 2.3.0", "pandas >= 1.0.0", "lit-nlp >= 0.4.0"]
profiler_extra_require = [
"tensorboard-plugin-profile >= 2.4.0",
"werkzeug >= 2.0.0",
"tensorflow >=2.4.0",
]

full_extra_require = list(
set(tensorboard_extra_require + metadata_extra_require + xai_extra_require)
set(
tensorboard_extra_require
+ metadata_extra_require
+ xai_extra_require
+ lit_extra_require
)
)
testing_extra_require = (
full_extra_require + profiler_extra_require + ["grpcio-testing", "pytest-xdist"]
full_extra_require
+ profiler_extra_require
+ ["grpcio-testing", "pytest-xdist", "ipython"]
)


Expand Down Expand Up @@ -88,7 +96,8 @@
"tensorboard": tensorboard_extra_require,
"testing": testing_extra_require,
"xai": xai_extra_require,
"cloud-profiler": profiler_extra_require,
"lit": lit_extra_require,
"cloud_profiler": profiler_extra_require,
},
python_requires=">=3.6",
scripts=[],
Expand Down
Loading