Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add create_hyperparameter_tuning_job_python_package sample #76

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# [START aiplatform_create_hyperparameter_tuning_job_python_package_sample]
from google.cloud import aiplatform


def create_hyperparameter_tuning_job_python_package_sample(
project: str,
display_name: str,
executor_image_uri: str,
package_uri: str,
python_module: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.JobServiceClient(client_options=client_options)

# study_spec
metric = {
"metric_id": "val_rmse",
"goal": aiplatform.gapic.StudySpec.MetricSpec.GoalType.MINIMIZE,
}

conditional_parameter_decay = {
"parameter_spec": {
"parameter_id": "decay",
"double_value_spec": {"min_value": 1e-07, "max_value": 1},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
"parent_discrete_values": {"values": [32, 64]},
}
conditional_parameter_learning_rate = {
"parameter_spec": {
"parameter_id": "learning_rate",
"double_value_spec": {"min_value": 1e-07, "max_value": 1},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
"parent_discrete_values": {"values": [4, 8, 16]},
}
parameter = {
"parameter_id": "batch_size",
"discrete_value_spec": {"values": [4, 8, 16, 32, 64, 128]},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
"conditional_parameter_specs": [
conditional_parameter_decay,
conditional_parameter_learning_rate,
],
}

# trial_job_spec
machine_spec = {
"machine_type": "n1-standard-4",
"accelerator_type": aiplatform.gapic.AcceleratorType.NVIDIA_TESLA_K80,
"accelerator_count": 1,
}
worker_pool_spec = {
"machine_spec": machine_spec,
"replica_count": 1,
"python_package_spec": {
"executor_image_uri": executor_image_uri,
"package_uris": [package_uri],
"python_module": python_module,
"args": [],
},
}

# hyperparameter_tuning_job
hyperparameter_tuning_job = {
"display_name": display_name,
"max_trial_count": 4,
"parallel_trial_count": 2,
"study_spec": {
"metrics": [metric],
"parameters": [parameter],
"algorithm": aiplatform.gapic.StudySpec.Algorithm.RANDOM_SEARCH,
},
"trial_job_spec": {"worker_pool_specs": [worker_pool_spec]},
}
parent = f"projects/{project}/locations/{location}"
response = client.create_hyperparameter_tuning_job(
parent=parent, hyperparameter_tuning_job=hyperparameter_tuning_job
)
print("response:", response)


# [END aiplatform_create_hyperparameter_tuning_job_python_package_sample]
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import uuid
import pytest
import os

import helpers

import create_hyperparameter_tuning_job_python_package_sample

from google.cloud import aiplatform

PROJECT_ID = os.getenv("BUILD_SPECIFIC_GCLOUD_PROJECT")

API_ENDPOINT = "us-central1-aiplatform.googleapis.com"

DISPLAY_NAME = (
f"temp_create_hyperparameter_tuning_job_python_package_test_{uuid.uuid4()}"
)

EXECUTOR_IMAGE_URI = "us.gcr.io/cloud-aiplatform/training/tf-gpu.2-1:latest"
PACKAGE_URI = "gs://ucaip-test-us-central1/training/pythonpackages/trainer.tar.bz2"
PYTHON_MODULE = "trainer.hptuning_trainer"

@pytest.fixture
def shared_state():
state = {}
yield state


@pytest.fixture
def job_client():
client_options = {"api_endpoint": API_ENDPOINT}
job_client = aiplatform.gapic.JobServiceClient(
client_options=client_options)
yield job_client


@pytest.fixture(scope="function", autouse=True)
def teardown(shared_state, job_client):
yield

# Cancel the created hyperparameter tuning job
job_client.cancel_hyperparameter_tuning_job(
name=shared_state["hyperparameter_tuning_job_name"]
)

# Waiting for hyperparameter tuning job to be in CANCELLED state
helpers.wait_for_job_state(
get_job_method=job_client.get_hyperparameter_tuning_job,
name=shared_state["hyperparameter_tuning_job_name"],
)

# Delete the created hyperparameter tuning job
job_client.delete_hyperparameter_tuning_job(
name=shared_state["hyperparameter_tuning_job_name"]
)


def test_create_hyperparameter_tuning_job_python_package_sample(capsys, shared_state):

create_hyperparameter_tuning_job_python_package_sample.create_hyperparameter_tuning_job_python_package_sample(
project=PROJECT_ID,
display_name=DISPLAY_NAME,
executor_image_uri=EXECUTOR_IMAGE_URI,
package_uri=PACKAGE_URI,
python_module=PYTHON_MODULE,
)

out, _ = capsys.readouterr()
assert "response" in out

shared_state["hyperparameter_tuning_job_name"] = helpers.get_name(out)