Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add explanation metadata get_metadata_protobuf for reuse #672

Merged
merged 5 commits into from
Sep 8, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 17 additions & 3 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -304,7 +304,7 @@ You can also create a batch prediction job asynchronously by including the `sync
batch_prediction_job.state

# block until job is complete
batch_prediction_job.wait()
batch_prediction_job.wait()


Endpoints
Expand Down Expand Up @@ -393,7 +393,7 @@ To create a Vertex Pipeline run:
Explainable AI: Get Metadata
----------------------------

To get metadata from TensorFlow 1 models:
To get metadata in dictionary format from TensorFlow 1 models:

.. code-block:: Python

Expand All @@ -404,7 +404,7 @@ To get metadata from TensorFlow 1 models:
)
generated_md = builder.get_metadata()

To get metadata from TensorFlow 2 models:
To get metadata in dictionary format from TensorFlow 2 models:

.. code-block:: Python

Expand All @@ -413,6 +413,20 @@ To get metadata from TensorFlow 2 models:
builder = saved_model_metadata_builder.SavedModelMetadataBuilder('gs://python/to/my/model/dir')
generated_md = builder.get_metadata()

To use Explanation Metadata in endpoint deployment and model upload:

.. code-block:: Python

explanation_metadata = builder.get_metadata_protobuf()

# To deploy a model to an endpoint with explanation
model.deploy(..., explanation_metadata=explanation_metadata)

# To deploy a model to a created endpoint with explanation
endpoint.deploy(..., explanation_metadata=explanation_metadata)

# To upload a model with explanation
aiplatform.Model.upload(..., explanation_metadata=explanation_metadata)


Next Steps
Expand Down
4 changes: 4 additions & 0 deletions google/cloud/aiplatform/explain/metadata/metadata_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,3 +28,7 @@ class MetadataBuilder(_ABC):
@abc.abstractmethod
def get_metadata(self):
"""Returns the current metadata as a dictionary."""

@abc.abstractmethod
def get_metadata_protobuf(self):
"""Returns the current metadata as ExplanationMetadata protobuf"""
Original file line number Diff line number Diff line change
Expand Up @@ -113,10 +113,17 @@ def get_metadata(self) -> Dict[str, Any]:
Returns:
Json format of the explanation metadata.
"""
current_md = explanation_metadata.ExplanationMetadata(
return json_format.MessageToDict(self.get_metadata_protobuf()._pb)

def get_metadata_protobuf(self) -> explanation_metadata.ExplanationMetadata:
"""Returns the current metadata as a Protobuf object.

Returns:
ExplanationMetadata object format of the explanation metadata.
"""
return explanation_metadata.ExplanationMetadata(
inputs=self._inputs, outputs=self._outputs,
)
return json_format.MessageToDict(current_md._pb)


def _create_input_metadata_from_signature(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,14 @@ def get_metadata(self) -> Dict[str, Any]:
Returns:
Json format of the explanation metadata.
"""
current_md = explanation_metadata.ExplanationMetadata(
return json_format.MessageToDict(self.get_metadata_protobuf()._pb)

def get_metadata_protobuf(self) -> explanation_metadata.ExplanationMetadata:
"""Returns the current metadata as a Protobuf object.

Returns:
ExplanationMetadata object format of the explanation metadata.
"""
return explanation_metadata.ExplanationMetadata(
inputs=self._inputs, outputs=self._outputs,
)
return json_format.MessageToDict(current_md._pb)
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,9 @@
import tensorflow.compat.v1 as tf

from google.cloud.aiplatform.explain.metadata.tf.v1 import saved_model_metadata_builder
from google.cloud.aiplatform.compat.types import (
explanation_metadata_v1beta1 as explanation_metadata,
)


class SavedModelMetadataBuilderTF1Test(tf.test.TestCase):
Expand Down Expand Up @@ -68,6 +71,18 @@ def test_get_metadata_correct_inputs(self):

assert md_builder.get_metadata() == expected_md

def test_get_metadata_protobuf_correct_inputs(self):
self._set_up()
md_builder = saved_model_metadata_builder.SavedModelMetadataBuilder(
self.model_path, tags=[tf.saved_model.tag_constants.SERVING]
)
expected_object = explanation_metadata.ExplanationMetadata(
inputs={"x": {"input_tensor_name": "inp:0"}},
outputs={"y": {"output_tensor_name": "Relu:0"}},
)

assert md_builder.get_metadata_protobuf() == expected_object

def test_get_metadata_double_output(self):
self._set_up()
md_builder = saved_model_metadata_builder.SavedModelMetadataBuilder(
Expand All @@ -80,3 +95,16 @@ def test_get_metadata_double_output(self):
}

assert md_builder.get_metadata() == expected_md

def test_get_metadata_protobuf_double_output(self):
self._set_up()
md_builder = saved_model_metadata_builder.SavedModelMetadataBuilder(
self.model_path, signature_name="double", outputs_to_explain=["lin"]
)

expected_object = explanation_metadata.ExplanationMetadata(
inputs={"x": {"input_tensor_name": "inp:0"}},
outputs={"lin": {"output_tensor_name": "Add:0"}},
)

assert md_builder.get_metadata_protobuf() == expected_object
Original file line number Diff line number Diff line change
Expand Up @@ -20,10 +20,13 @@
import numpy as np

from google.cloud.aiplatform.explain.metadata.tf.v2 import saved_model_metadata_builder
from google.cloud.aiplatform.compat.types import (
explanation_metadata_v1beta1 as explanation_metadata,
)


class SavedModelMetadataBuilderTF2Test(tf.test.TestCase):
def test_get_metadata_sequential(self):
def _set_up_sequential(self):
# Set up for the sequential.
self.seq_model = tf.keras.models.Sequential()
self.seq_model.add(tf.keras.layers.Dense(32, activation="relu", input_dim=10))
Expand All @@ -32,6 +35,9 @@ def test_get_metadata_sequential(self):
self.saved_model_path = self.get_temp_dir()
tf.saved_model.save(self.seq_model, self.saved_model_path)

def test_get_metadata_sequential(self):
self._set_up_sequential()

builder = saved_model_metadata_builder.SavedModelMetadataBuilder(
self.saved_model_path
)
Expand All @@ -42,6 +48,19 @@ def test_get_metadata_sequential(self):
}
assert expected_md == generated_md

def test_get_metadata_protobuf_sequential(self):
self._set_up_sequential()

builder = saved_model_metadata_builder.SavedModelMetadataBuilder(
self.saved_model_path
)
generated_object = builder.get_metadata_protobuf()
expected_object = explanation_metadata.ExplanationMetadata(
inputs={"dense_input": {"input_tensor_name": "dense_input"}},
outputs={"dense_2": {"output_tensor_name": "dense_2"}},
)
assert expected_object == generated_object

def test_get_metadata_functional(self):
inputs1 = tf.keras.Input(shape=(10,), name="model_input1")
inputs2 = tf.keras.Input(shape=(10,), name="model_input2")
Expand Down