Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add Vizier service to aiplatform v1 #671

Merged
merged 2 commits into from
Sep 1, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 28 additions & 2 deletions google/cloud/aiplatform_v1/services/job_service/async_client.py
Original file line number Diff line number Diff line change
Expand Up @@ -2218,8 +2218,34 @@ async def update_model_deployment_monitoring_job(
on the ``request`` instance; if ``request`` is provided, this
should not be set.
update_mask (:class:`google.protobuf.field_mask_pb2.FieldMask`):
Required. The update mask applies to
the resource.
Required. The update mask is used to specify the fields
to be overwritten in the ModelDeploymentMonitoringJob
resource by the update. The fields specified in the
update_mask are relative to the resource, not the full
request. A field will be overwritten if it is in the
mask. If the user does not provide a mask then only the
non-empty fields present in the request will be
overwritten. Set the update_mask to ``*`` to override
all fields. For the objective config, the user can
either provide the update mask for
model_deployment_monitoring_objective_configs or any
combination of its nested fields, such as:
model_deployment_monitoring_objective_configs.objective_config.training_dataset.

Updatable fields:

- ``display_name``
- ``model_deployment_monitoring_schedule_config``
- ``model_monitoring_alert_config``
- ``logging_sampling_strategy``
- ``labels``
- ``log_ttl``
- ``enable_monitoring_pipeline_logs`` . and
- ``model_deployment_monitoring_objective_configs`` .
or
- ``model_deployment_monitoring_objective_configs.objective_config.training_dataset``
- ``model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config``
- ``model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config``

This corresponds to the ``update_mask`` field
on the ``request`` instance; if ``request`` is provided, this
Expand Down
30 changes: 28 additions & 2 deletions google/cloud/aiplatform_v1/services/job_service/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -2574,8 +2574,34 @@ def update_model_deployment_monitoring_job(
on the ``request`` instance; if ``request`` is provided, this
should not be set.
update_mask (google.protobuf.field_mask_pb2.FieldMask):
Required. The update mask applies to
the resource.
Required. The update mask is used to specify the fields
to be overwritten in the ModelDeploymentMonitoringJob
resource by the update. The fields specified in the
update_mask are relative to the resource, not the full
request. A field will be overwritten if it is in the
mask. If the user does not provide a mask then only the
non-empty fields present in the request will be
overwritten. Set the update_mask to ``*`` to override
all fields. For the objective config, the user can
either provide the update mask for
model_deployment_monitoring_objective_configs or any
combination of its nested fields, such as:
model_deployment_monitoring_objective_configs.objective_config.training_dataset.

Updatable fields:

- ``display_name``
- ``model_deployment_monitoring_schedule_config``
- ``model_monitoring_alert_config``
- ``logging_sampling_strategy``
- ``labels``
- ``log_ttl``
- ``enable_monitoring_pipeline_logs`` . and
- ``model_deployment_monitoring_objective_configs`` .
or
- ``model_deployment_monitoring_objective_configs.objective_config.training_dataset``
- ``model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config``
- ``model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config``

This corresponds to the ``update_mask`` field
on the ``request`` instance; if ``request`` is provided, this
Expand Down
28 changes: 26 additions & 2 deletions google/cloud/aiplatform_v1/types/job_service.py
Original file line number Diff line number Diff line change
Expand Up @@ -791,8 +791,32 @@ class UpdateModelDeploymentMonitoringJobRequest(proto.Message):
Required. The model monitoring configuration
which replaces the resource on the server.
update_mask (google.protobuf.field_mask_pb2.FieldMask):
Required. The update mask applies to the
resource.
Required. The update mask is used to specify the fields to
be overwritten in the ModelDeploymentMonitoringJob resource
by the update. The fields specified in the update_mask are
relative to the resource, not the full request. A field will
be overwritten if it is in the mask. If the user does not
provide a mask then only the non-empty fields present in the
request will be overwritten. Set the update_mask to ``*`` to
override all fields. For the objective config, the user can
either provide the update mask for
model_deployment_monitoring_objective_configs or any
combination of its nested fields, such as:
model_deployment_monitoring_objective_configs.objective_config.training_dataset.

Updatable fields:

- ``display_name``
- ``model_deployment_monitoring_schedule_config``
- ``model_monitoring_alert_config``
- ``logging_sampling_strategy``
- ``labels``
- ``log_ttl``
- ``enable_monitoring_pipeline_logs`` . and
- ``model_deployment_monitoring_objective_configs`` . or
- ``model_deployment_monitoring_objective_configs.objective_config.training_dataset``
- ``model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config``
- ``model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config``
"""

model_deployment_monitoring_job = proto.Field(
Expand Down