Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: expose env var in cust training class run func args #366

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 120 additions & 0 deletions google/cloud/aiplatform/training_jobs.py
Original file line number Diff line number Diff line change
Expand Up @@ -1805,6 +1805,7 @@ def run(
service_account: Optional[str] = None,
bigquery_destination: Optional[str] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
replica_count: int = 0,
machine_type: str = "n1-standard-4",
accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED",
Expand Down Expand Up @@ -1880,6 +1881,13 @@ def run(
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.

AI Platform sets the following environment variables when it runs your training code:

- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/

service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand All @@ -1900,6 +1908,16 @@ def run(
- AIP_TEST_DATA_URI = "bigquery_destination.dataset_*.test"
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.

environment_variables = {
'MY_KEY': 'MY_VALUE'
}
replica_count (int):
The number of worker replicas. If replica count = 1 then one chief
replica will be provisioned. If replica_count > 1 the remainder will be
Expand Down Expand Up @@ -1960,6 +1978,7 @@ def run(
worker_pool_specs=worker_pool_specs,
managed_model=managed_model,
args=args,
environment_variables=environment_variables,
base_output_dir=base_output_dir,
service_account=service_account,
bigquery_destination=bigquery_destination,
Expand All @@ -1986,6 +2005,7 @@ def _run(
worker_pool_specs: _DistributedTrainingSpec,
managed_model: Optional[gca_model.Model] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
base_output_dir: Optional[str] = None,
service_account: Optional[str] = None,
bigquery_destination: Optional[str] = None,
Expand Down Expand Up @@ -2018,9 +2038,26 @@ def _run(
Model proto if this script produces a Managed Model.
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.

environment_variables = {
'MY_KEY': 'MY_VALUE'
}
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.

AI Platform sets the following environment variables when it runs your training code:

- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/

service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand Down Expand Up @@ -2083,6 +2120,9 @@ def _run(
if args:
spec["pythonPackageSpec"]["args"] = args

if environment_variables:
spec["pythonPackageSpec"]["env"] = environment_variables

(
training_task_inputs,
base_output_dir,
Expand Down Expand Up @@ -2334,6 +2374,7 @@ def run(
service_account: Optional[str] = None,
bigquery_destination: Optional[str] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
replica_count: int = 0,
machine_type: str = "n1-standard-4",
accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED",
Expand Down Expand Up @@ -2402,6 +2443,13 @@ def run(
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.

AI Platform sets the following environment variables when it runs your training code:

- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/

service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand All @@ -2422,6 +2470,16 @@ def run(
- AIP_TEST_DATA_URI = "bigquery_destination.dataset_*.test"
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.

environment_variables = {
'MY_KEY': 'MY_VALUE'
}
replica_count (int):
The number of worker replicas. If replica count = 1 then one chief
replica will be provisioned. If replica_count > 1 the remainder will be
Expand Down Expand Up @@ -2481,6 +2539,7 @@ def run(
worker_pool_specs=worker_pool_specs,
managed_model=managed_model,
args=args,
environment_variables=environment_variables,
base_output_dir=base_output_dir,
service_account=service_account,
bigquery_destination=bigquery_destination,
Expand All @@ -2506,6 +2565,7 @@ def _run(
worker_pool_specs: _DistributedTrainingSpec,
managed_model: Optional[gca_model.Model] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
base_output_dir: Optional[str] = None,
service_account: Optional[str] = None,
bigquery_destination: Optional[str] = None,
Expand Down Expand Up @@ -2535,9 +2595,26 @@ def _run(
Model proto if this script produces a Managed Model.
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.

environment_variables = {
'MY_KEY': 'MY_VALUE'
}
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.

AI Platform sets the following environment variables when it runs your training code:

- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/

service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand Down Expand Up @@ -2593,6 +2670,9 @@ def _run(
if args:
spec["containerSpec"]["args"] = args

if environment_variables:
spec["containerSpec"]["env"] = environment_variables

(
training_task_inputs,
base_output_dir,
Expand Down Expand Up @@ -3625,6 +3705,7 @@ def run(
service_account: Optional[str] = None,
bigquery_destination: Optional[str] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
replica_count: int = 0,
machine_type: str = "n1-standard-4",
accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED",
Expand Down Expand Up @@ -3693,6 +3774,13 @@ def run(
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.

AI Platform sets the following environment variables when it runs your training code:

- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/

service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand All @@ -3713,6 +3801,16 @@ def run(
- AIP_TEST_DATA_URI = "bigquery_destination.dataset_*.test"
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.

environment_variables = {
'MY_KEY': 'MY_VALUE'
}
replica_count (int):
The number of worker replicas. If replica count = 1 then one chief
replica will be provisioned. If replica_count > 1 the remainder will be
Expand Down Expand Up @@ -3767,6 +3865,7 @@ def run(
worker_pool_specs=worker_pool_specs,
managed_model=managed_model,
args=args,
environment_variables=environment_variables,
base_output_dir=base_output_dir,
service_account=service_account,
training_fraction_split=training_fraction_split,
Expand All @@ -3792,6 +3891,7 @@ def _run(
worker_pool_specs: _DistributedTrainingSpec,
managed_model: Optional[gca_model.Model] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
base_output_dir: Optional[str] = None,
service_account: Optional[str] = None,
training_fraction_split: float = 0.8,
Expand Down Expand Up @@ -3822,9 +3922,26 @@ def _run(
Model proto if this script produces a Managed Model.
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.

environment_variables = {
'MY_KEY': 'MY_VALUE'
}
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.

AI Platform sets the following environment variables when it runs your training code:

- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/

service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand Down Expand Up @@ -3866,6 +3983,9 @@ def _run(
if args:
spec["pythonPackageSpec"]["args"] = args

if environment_variables:
spec["pythonPackageSpec"]["env"] = environment_variables

(
training_task_inputs,
base_output_dir,
Expand Down
Loading