Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: predict image samples params #150

Merged
merged 1 commit into from
Dec 23, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,8 @@ def make_instances(filename: str) -> typing.Sequence[google.protobuf.struct_pb2.
def make_parameters() -> google.protobuf.struct_pb2.Value:
# See gs://google-cloud-aiplatform/schema/predict/params/image_classification_1.0.0.yaml for the format of the parameters.
parameters_dict = {
"confidence_threshold": 0.5,
"max_predictions": 5
"confidenceThreshold": 0.5,
"maxPredictions": 5
}
parameters = to_protobuf_value(parameters_dict)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,8 @@ def make_instances(filename: str) -> typing.Sequence[google.protobuf.struct_pb2.
def make_parameters() -> google.protobuf.struct_pb2.Value:
# See gs://google-cloud-aiplatform/schema/predict/params/image_object_detection_1.0.0.yaml for the format of the parameters.
parameters_dict = {
"confidence_threshold": 0.5,
"max_predictions": 5
"confidenceThreshold": 0.5,
"maxPredictions": 5
}
parameters = to_protobuf_value(parameters_dict)

Expand Down
27 changes: 12 additions & 15 deletions samples/snippets/predict_image_classification_sample.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,8 @@
import base64

from google.cloud import aiplatform
from google.cloud.aiplatform.schema import predict
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value


def predict_image_classification_sample(
Expand All @@ -36,29 +37,25 @@ def predict_image_classification_sample(

# The format of each instance should conform to the deployed model's prediction input schema.
encoded_content = base64.b64encode(file_content).decode("utf-8")
instance_dict = {"content": encoded_content}

instance_obj = predict.instance.ImageClassificationPredictionInstance(
content=encoded_content)

instance_val = instance_obj.to_value()
instances = [instance_val]

params_obj = predict.params.ImageClassificationPredictionParams(
confidence_threshold=0.5, max_predictions=5)

instance = json_format.ParseDict(instance_dict, Value())
instances = [instance]
# See gs://google-cloud-aiplatform/schema/predict/params/image_classification_1.0.0.yaml for the format of the parameters.
parameters_dict = {"confidenceThreshold": 0.5, "maxPredictions": 5}
parameters = json_format.ParseDict(parameters_dict, Value())
endpoint = client.endpoint_path(
project=project, location=location, endpoint=endpoint_id
)
response = client.predict(
endpoint=endpoint, instances=instances, parameters=params_obj
endpoint=endpoint, instances=instances, parameters=parameters
)
print("response")
print("\tdeployed_model_id:", response.deployed_model_id)
print(" deployed_model_id:", response.deployed_model_id)
# See gs://google-cloud-aiplatform/schema/predict/prediction/classification.yaml for the format of the predictions.
predictions = response.predictions
for prediction_ in predictions:
prediction_obj = predict.prediction.ClassificationPredictionResult.from_map(prediction_)
print(prediction_obj)
for prediction in predictions:
print(" prediction:", dict(prediction))


# [END aiplatform_predict_image_classification_sample]
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def predict_image_object_detection_sample(
instance = json_format.ParseDict(instance_dict, Value())
instances = [instance]
# See gs://google-cloud-aiplatform/schema/predict/params/image_object_detection_1.0.0.yaml for the format of the parameters.
parameters_dict = {"confidence_threshold": 0.5, "max_predictions": 5}
parameters_dict = {"confidenceThreshold": 0.5, "maxPredictions": 5}
parameters = json_format.ParseDict(parameters_dict, Value())
endpoint = client.endpoint_path(
project=project, location=location, endpoint=endpoint_id
Expand Down