Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: change default for create_request_timeout arg to None #1175

Merged
merged 3 commits into from
Apr 20, 2022
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion google/cloud/aiplatform/training_jobs.py
Original file line number Diff line number Diff line change
Expand Up @@ -4736,7 +4736,7 @@ def run(
model_labels: Optional[Dict[str, str]] = None,
disable_early_stopping: bool = False,
sync: bool = True,
create_request_timeout: Optional[float] = False,
create_request_timeout: Optional[float] = None,
) -> models.Model:
"""Runs the AutoML Image training job and returns a model.

Expand Down
155 changes: 155 additions & 0 deletions tests/unit/aiplatform/test_training_jobs.py
Original file line number Diff line number Diff line change
Expand Up @@ -4737,6 +4737,161 @@ def test_run_call_pipeline_service_create_with_tabular_dataset_with_timeout(
timeout=180.0,
)

@pytest.mark.parametrize("sync", [True, False])
def test_run_call_pipeline_service_create_with_tabular_dataset_with_timeout_not_explicitly_set(
self,
mock_pipeline_service_create,
mock_pipeline_service_get,
mock_tabular_dataset,
mock_model_service_get,
sync,
):
aiplatform.init(
project=_TEST_PROJECT,
staging_bucket=_TEST_BUCKET_NAME,
encryption_spec_key_name=_TEST_DEFAULT_ENCRYPTION_KEY_NAME,
)

job = training_jobs.CustomPythonPackageTrainingJob(
display_name=_TEST_DISPLAY_NAME,
labels=_TEST_LABELS,
python_package_gcs_uri=_TEST_OUTPUT_PYTHON_PACKAGE_PATH,
python_module_name=_TEST_PYTHON_MODULE_NAME,
container_uri=_TEST_TRAINING_CONTAINER_IMAGE,
model_serving_container_image_uri=_TEST_SERVING_CONTAINER_IMAGE,
model_serving_container_predict_route=_TEST_SERVING_CONTAINER_PREDICTION_ROUTE,
model_serving_container_health_route=_TEST_SERVING_CONTAINER_HEALTH_ROUTE,
model_serving_container_command=_TEST_MODEL_SERVING_CONTAINER_COMMAND,
model_serving_container_args=_TEST_MODEL_SERVING_CONTAINER_ARGS,
model_serving_container_environment_variables=_TEST_MODEL_SERVING_CONTAINER_ENVIRONMENT_VARIABLES,
model_serving_container_ports=_TEST_MODEL_SERVING_CONTAINER_PORTS,
model_description=_TEST_MODEL_DESCRIPTION,
model_instance_schema_uri=_TEST_MODEL_INSTANCE_SCHEMA_URI,
model_parameters_schema_uri=_TEST_MODEL_PARAMETERS_SCHEMA_URI,
model_prediction_schema_uri=_TEST_MODEL_PREDICTION_SCHEMA_URI,
)

model_from_job = job.run(
dataset=mock_tabular_dataset,
model_display_name=_TEST_MODEL_DISPLAY_NAME,
model_labels=_TEST_MODEL_LABELS,
base_output_dir=_TEST_BASE_OUTPUT_DIR,
service_account=_TEST_SERVICE_ACCOUNT,
network=_TEST_NETWORK,
args=_TEST_RUN_ARGS,
environment_variables=_TEST_ENVIRONMENT_VARIABLES,
machine_type=_TEST_MACHINE_TYPE,
accelerator_type=_TEST_ACCELERATOR_TYPE,
accelerator_count=_TEST_ACCELERATOR_COUNT,
training_fraction_split=_TEST_TRAINING_FRACTION_SPLIT,
validation_fraction_split=_TEST_VALIDATION_FRACTION_SPLIT,
test_fraction_split=_TEST_TEST_FRACTION_SPLIT,
sync=sync,
)

if not sync:
model_from_job.wait()

true_args = _TEST_RUN_ARGS
true_env = [
{"name": key, "value": value}
for key, value in _TEST_ENVIRONMENT_VARIABLES.items()
]

true_worker_pool_spec = {
"replica_count": _TEST_REPLICA_COUNT,
"machine_spec": {
"machine_type": _TEST_MACHINE_TYPE,
"accelerator_type": _TEST_ACCELERATOR_TYPE,
"accelerator_count": _TEST_ACCELERATOR_COUNT,
},
"disk_spec": {
"boot_disk_type": _TEST_BOOT_DISK_TYPE_DEFAULT,
"boot_disk_size_gb": _TEST_BOOT_DISK_SIZE_GB_DEFAULT,
},
"python_package_spec": {
"executor_image_uri": _TEST_TRAINING_CONTAINER_IMAGE,
"python_module": _TEST_PYTHON_MODULE_NAME,
"package_uris": [_TEST_OUTPUT_PYTHON_PACKAGE_PATH],
"args": true_args,
"env": true_env,
},
}

true_fraction_split = gca_training_pipeline.FractionSplit(
training_fraction=_TEST_TRAINING_FRACTION_SPLIT,
validation_fraction=_TEST_VALIDATION_FRACTION_SPLIT,
test_fraction=_TEST_TEST_FRACTION_SPLIT,
)

env = [
gca_env_var.EnvVar(name=str(key), value=str(value))
for key, value in _TEST_MODEL_SERVING_CONTAINER_ENVIRONMENT_VARIABLES.items()
]

ports = [
gca_model.Port(container_port=port)
for port in _TEST_MODEL_SERVING_CONTAINER_PORTS
]

true_container_spec = gca_model.ModelContainerSpec(
image_uri=_TEST_SERVING_CONTAINER_IMAGE,
predict_route=_TEST_SERVING_CONTAINER_PREDICTION_ROUTE,
health_route=_TEST_SERVING_CONTAINER_HEALTH_ROUTE,
command=_TEST_MODEL_SERVING_CONTAINER_COMMAND,
args=_TEST_MODEL_SERVING_CONTAINER_ARGS,
env=env,
ports=ports,
)

true_managed_model = gca_model.Model(
display_name=_TEST_MODEL_DISPLAY_NAME,
labels=_TEST_MODEL_LABELS,
description=_TEST_MODEL_DESCRIPTION,
container_spec=true_container_spec,
predict_schemata=gca_model.PredictSchemata(
instance_schema_uri=_TEST_MODEL_INSTANCE_SCHEMA_URI,
parameters_schema_uri=_TEST_MODEL_PARAMETERS_SCHEMA_URI,
prediction_schema_uri=_TEST_MODEL_PREDICTION_SCHEMA_URI,
),
encryption_spec=_TEST_DEFAULT_ENCRYPTION_SPEC,
)

true_input_data_config = gca_training_pipeline.InputDataConfig(
fraction_split=true_fraction_split,
dataset_id=mock_tabular_dataset.name,
gcs_destination=gca_io.GcsDestination(
output_uri_prefix=_TEST_BASE_OUTPUT_DIR
),
)

true_training_pipeline = gca_training_pipeline.TrainingPipeline(
display_name=_TEST_DISPLAY_NAME,
labels=_TEST_LABELS,
training_task_definition=schema.training_job.definition.custom_task,
training_task_inputs=json_format.ParseDict(
{
"worker_pool_specs": [true_worker_pool_spec],
"base_output_directory": {
"output_uri_prefix": _TEST_BASE_OUTPUT_DIR
},
"service_account": _TEST_SERVICE_ACCOUNT,
"network": _TEST_NETWORK,
},
struct_pb2.Value(),
),
model_to_upload=true_managed_model,
input_data_config=true_input_data_config,
encryption_spec=_TEST_DEFAULT_ENCRYPTION_SPEC,
)

mock_pipeline_service_create.assert_called_once_with(
parent=initializer.global_config.common_location_path(),
training_pipeline=true_training_pipeline,
timeout=None,
)


@pytest.mark.parametrize("sync", [True, False])
def test_run_call_pipeline_service_create_with_tabular_dataset_without_model_display_name_nor_model_labels(
self,
Expand Down