Skip to content

Commit

Permalink
feat: add explain get_metadata function for tf2. (#507)
Browse files Browse the repository at this point in the history
* feat: add cancel method to pipeline client

* feat: add basic metadata structure for XAI explain

* feat: add tf2 get_metadata function

* feat: add tf2 get_metadata function

* Add more tests for tf2_getmetadata

* Address comments

* Update to tensorflow instead of tensorflow-cpu

* Move one time use setup function
  • Loading branch information
ji-yaqi authored Jul 8, 2021
1 parent 95639ee commit f6f9a97
Show file tree
Hide file tree
Showing 5 changed files with 325 additions and 6 deletions.
4 changes: 0 additions & 4 deletions google/cloud/aiplatform/explain/metadata/metadata_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,10 +25,6 @@
class MetadataBuilder(_ABC):
"""Abstract base class for metadata builders."""

@abc.abstractmethod
def save_model_with_metadata(self, filepath: str):
"""Saves the model with metadata."""

@abc.abstractmethod
def get_metadata(self):
"""Returns the current metadata as a dictionary."""
15 changes: 15 additions & 0 deletions google/cloud/aiplatform/explain/metadata/tf/v2/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
# -*- coding: utf-8 -*-

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
# -*- coding: utf-8 -*-

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from google.protobuf import json_format
from typing import Optional, List, Dict, Any, Tuple

from google.cloud.aiplatform.explain.metadata import metadata_builder
from google.cloud.aiplatform.compat.types import (
explanation_metadata_v1beta1 as explanation_metadata,
)


class SavedModelMetadataBuilder(metadata_builder.MetadataBuilder):
"""Class for generating metadata for a model built with TF 2.X Keras API."""

def __init__(
self,
model_path: str,
signature_name: Optional[str] = None,
outputs_to_explain: Optional[List[str]] = None,
**kwargs
) -> None:
"""Initializes a SavedModelMetadataBuilder object.
Args:
model_path:
Required. Path to load the saved model from.
signature_name:
Optional. Name of the signature to be explained. Inputs and
outputs of this signature will be written in the metadata. If not
provided, the default signature will be used.
outputs_to_explain:
Optional. List of output names to explain. Only single output is
supported for now. Hence, the list should contain one element.
This parameter is required if the model signature (provided via
signature_name) specifies multiple outputs.
**kwargs:
Any keyword arguments to be passed to tf.saved_model.save() function.
Raises:
ValueError if outputs_to_explain contains more than 1 element.
ImportError if tf is not imported.
"""
if outputs_to_explain and len(outputs_to_explain) > 1:
raise ValueError(
'"outputs_to_explain" can only contain 1 element.\n'
"Got: %s" % len(outputs_to_explain)
)
self._explain_output = outputs_to_explain
self._saved_model_args = kwargs

try:
import tensorflow as tf
except ImportError:
raise ImportError(
"Tensorflow is not installed and is required to load saved model. "
'Please install the SDK using "pip install google-cloud-aiplatform[full]"'
)

if not signature_name:
signature_name = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY
self._loaded_model = tf.saved_model.load(model_path)
self._inputs, self._outputs = self._infer_metadata_entries_from_model(
signature_name
)

def _infer_metadata_entries_from_model(
self, signature_name: str
) -> Tuple[
Dict[str, explanation_metadata.ExplanationMetadata.InputMetadata],
Dict[str, explanation_metadata.ExplanationMetadata.OutputMetadata],
]:
"""Infers metadata inputs and outputs.
Args:
signature_name:
Required. Name of the signature to be explained. Inputs and outputs of this signature will be written in the metadata. If not provided, the default signature will be used.
Returns:
Inferred input metadata and output metadata from the model.
Raises:
ValueError if specified name is not found in signature outputs.
"""

loaded_sig = self._loaded_model.signatures[signature_name]
_, input_sig = loaded_sig.structured_input_signature
output_sig = loaded_sig.structured_outputs
input_mds = {}
for name, tensor_spec in input_sig.items():
input_mds[name] = explanation_metadata.ExplanationMetadata.InputMetadata(
input_tensor_name=name,
modality=None if tensor_spec.dtype.is_floating else "categorical",
)

output_mds = {}
for name in output_sig:
if not self._explain_output or self._explain_output[0] == name:
output_mds[
name
] = explanation_metadata.ExplanationMetadata.OutputMetadata(
output_tensor_name=name,
)
break
else:
raise ValueError(
"Specified output name cannot be found in given signature outputs."
)
return input_mds, output_mds

def get_metadata(self) -> Dict[str, Any]:
"""Returns the current metadata as a dictionary.
Returns:
Json format of the explanation metadata.
"""
current_md = explanation_metadata.ExplanationMetadata(
inputs=self._inputs, outputs=self._outputs,
)
return json_format.MessageToDict(current_md._pb)
12 changes: 10 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,16 @@
with io.open(readme_filename, encoding="utf-8") as readme_file:
readme = readme_file.read()

tensorboard_extra_require = ["tensorflow >=2.3.0, <=2.5.0"]
tensorboard_extra_require = [
"tensorflow >=2.3.0, <=2.5.0",
"grpcio~=1.34.0",
"six~=1.15.0",
]
metadata_extra_require = ["pandas >= 1.0.0"]
full_extra_require = tensorboard_extra_require + metadata_extra_require
xai_extra_require = ["tensorflow >=2.3.0, <=2.5.0"]
full_extra_require = list(
set(tensorboard_extra_require + metadata_extra_require + xai_extra_require)
)
testing_extra_require = full_extra_require + ["grpcio-testing"]


Expand Down Expand Up @@ -69,6 +76,7 @@
"metadata": metadata_extra_require,
"tensorboard": tensorboard_extra_require,
"testing": testing_extra_require,
"xai": xai_extra_require,
},
python_requires=">=3.6",
scripts=[],
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
# -*- coding: utf-8 -*-

# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


import tensorflow as tf
import numpy as np

from google.cloud.aiplatform.explain.metadata.tf.v2 import saved_model_metadata_builder


class SavedModelMetadataBuilderTest(tf.test.TestCase):
def test_get_metadata_sequential(self):
# Set up for the sequential.
self.seq_model = tf.keras.models.Sequential()
self.seq_model.add(tf.keras.layers.Dense(32, activation="relu", input_dim=10))
self.seq_model.add(tf.keras.layers.Dense(32, activation="relu"))
self.seq_model.add(tf.keras.layers.Dense(1, activation="sigmoid"))
self.saved_model_path = self.get_temp_dir()
tf.saved_model.save(self.seq_model, self.saved_model_path)

builder = saved_model_metadata_builder.SavedModelMetadataBuilder(
self.saved_model_path
)
generated_md = builder.get_metadata()
expected_md = {
"outputs": {"dense_2": {"outputTensorName": "dense_2"}},
"inputs": {"dense_input": {"inputTensorName": "dense_input"}},
}
assert expected_md == generated_md

def test_get_metadata_functional(self):
inputs1 = tf.keras.Input(shape=(10,), name="model_input1")
inputs2 = tf.keras.Input(shape=(10,), name="model_input2")
x = tf.keras.layers.Dense(32, activation="relu")(inputs1)
x = tf.keras.layers.Dense(32, activation="relu")(x)
x = tf.keras.layers.concatenate([x, inputs2])
outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x)
fun_model = tf.keras.Model(
inputs=[inputs1, inputs2], outputs=outputs, name="fun"
)
model_dir = self.get_temp_dir()
tf.saved_model.save(fun_model, model_dir)
builder = saved_model_metadata_builder.SavedModelMetadataBuilder(model_dir)
generated_md = builder.get_metadata()
expected_md = {
"inputs": {
"model_input1": {"inputTensorName": "model_input1"},
"model_input2": {"inputTensorName": "model_input2"},
},
"outputs": {"dense_2": {"outputTensorName": "dense_2"}},
}
assert expected_md == generated_md

def test_get_metadata_subclassed_model(self):
class MyModel(tf.keras.Model):
def __init__(self, num_classes=2):
super(MyModel, self).__init__(name="my_model")
self.num_classes = num_classes
self.dense_1 = tf.keras.layers.Dense(32, activation="relu")
self.dense_2 = tf.keras.layers.Dense(num_classes, activation="sigmoid")

def call(self, inputs):
x = self.dense_1(inputs)
return self.dense_2(x)

subclassed_model = MyModel()
subclassed_model.compile(loss="categorical_crossentropy")
np.random.seed(0)
x_train = np.random.random((1, 100))
y_train = np.random.randint(2, size=(1, 2))
subclassed_model.fit(x_train, y_train, batch_size=1, epochs=1)
model_dir = self.get_temp_dir()
tf.saved_model.save(subclassed_model, model_dir)

builder = saved_model_metadata_builder.SavedModelMetadataBuilder(model_dir)
generated_md = builder.get_metadata()
expected_md = {
"inputs": {"input_1": {"inputTensorName": "input_1"}},
"outputs": {"output_1": {"outputTensorName": "output_1"}},
}
assert expected_md == generated_md

def test_non_keras_model(self):
class CustomModuleWithOutputName(tf.Module):
def __init__(self):
super(CustomModuleWithOutputName, self).__init__()
self.v = tf.Variable(1.0)

@tf.function(input_signature=[tf.TensorSpec([], tf.float32)])
def __call__(self, x):
return {"custom_output_name": x * self.v}

module_output = CustomModuleWithOutputName()
call_output = module_output.__call__.get_concrete_function(
tf.TensorSpec(None, tf.float32)
)
model_dir = self.get_temp_dir()
tf.saved_model.save(
module_output, model_dir, signatures={"serving_default": call_output}
)

builder = saved_model_metadata_builder.SavedModelMetadataBuilder(model_dir)
generated_md = builder.get_metadata()
expected_md = {
"inputs": {"x": {"inputTensorName": "x"}},
"outputs": {
"custom_output_name": {"outputTensorName": "custom_output_name"}
},
}
assert expected_md == generated_md

def test_model_with_feature_column(self):
feature_columns = [
tf.feature_column.embedding_column(
tf.feature_column.categorical_column_with_vocabulary_list(
"mode", ["fixed", "normal", "reversible"]
),
dimension=8,
),
tf.feature_column.numeric_column("age"),
]
feature_layer = tf.keras.layers.DenseFeatures(feature_columns)

model = tf.keras.Sequential(
[
feature_layer,
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(1),
]
)

model.compile(
optimizer="adam",
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=["accuracy"],
)

model.fit(
{"age": np.array([20, 1]), "mode": np.array(["fixed", "normal"])},
np.array([0, 1]),
)
model_dir = self.get_temp_dir()
tf.saved_model.save(model, model_dir)
builder = saved_model_metadata_builder.SavedModelMetadataBuilder(model_dir)
generated_md = builder.get_metadata()
expected_md = {
"inputs": {
"age": {"inputTensorName": "age", "modality": "categorical"},
"mode": {"inputTensorName": "mode", "modality": "categorical"},
},
"outputs": {"output_1": {"outputTensorName": "output_1"}},
}
assert expected_md == generated_md

0 comments on commit f6f9a97

Please sign in to comment.