Skip to content

Commit

Permalink
feat: pre batch creating TensorboardRuns and TensorboardTimeSeries in…
Browse files Browse the repository at this point in the history
… one_shot mode to speed up uploading (#772)

* feat: pre batch creating TensorboardRuns and TensorboardTimeSeries in one_shot mode to speed up uploading

Co-authored-by: Yicheng Fang <[email protected]>
  • Loading branch information
yfang1 and Yicheng Fang authored Oct 21, 2021
1 parent 8ef0ded commit c9f68c6
Show file tree
Hide file tree
Showing 3 changed files with 270 additions and 27 deletions.
136 changes: 115 additions & 21 deletions google/cloud/aiplatform/tensorboard/uploader.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
Iterable,
Optional,
ContextManager,
Tuple,
)
import uuid

Expand Down Expand Up @@ -195,6 +196,7 @@ def __init__(
self._logdir = logdir
self._allowed_plugins = frozenset(allowed_plugins)
self._run_name_prefix = run_name_prefix
self._is_brand_new_experiment = False

self._upload_limits = upload_limits
if not self._upload_limits:
Expand Down Expand Up @@ -265,6 +267,9 @@ def active_filter(secs):
self._logdir_loader = logdir_loader.LogdirLoader(
self._logdir, directory_loader_factory
)
self._logdir_loader_pre_create = logdir_loader.LogdirLoader(
self._logdir, directory_loader_factory
)
self._tracker = upload_tracker.UploadTracker(verbosity=self._verbosity)

self._create_additional_senders()
Expand All @@ -290,6 +295,7 @@ def _create_or_get_experiment(self) -> tensorboard_experiment.TensorboardExperim
tensorboard_experiment=tb_experiment,
tensorboard_experiment_id=self._experiment_name,
)
self._is_brand_new_experiment = True
except exceptions.AlreadyExists:
logger.info("Creating experiment failed. Retrieving experiment.")
experiment_name = os.path.join(
Expand All @@ -303,7 +309,11 @@ def create_experiment(self):

experiment = self._create_or_get_experiment()
self._experiment = experiment
request_sender = _BatchedRequestSender(
self._one_platform_resource_manager = uploader_utils.OnePlatformResourceManager(
self._experiment.name, self._api
)

self._request_sender = _BatchedRequestSender(
self._experiment.name,
self._api,
allowed_plugins=self._allowed_plugins,
Expand All @@ -313,6 +323,7 @@ def create_experiment(self):
blob_rpc_rate_limiter=self._blob_rpc_rate_limiter,
blob_storage_bucket=self._blob_storage_bucket,
blob_storage_folder=self._blob_storage_folder,
one_platform_resource_manager=self._one_platform_resource_manager,
tracker=self._tracker,
)

Expand All @@ -323,7 +334,8 @@ def create_experiment(self):
)

self._dispatcher = _Dispatcher(
request_sender=request_sender, additional_senders=self._additional_senders,
request_sender=self._request_sender,
additional_senders=self._additional_senders,
)

def _create_additional_senders(self) -> Dict[str, uploader_utils.RequestSender]:
Expand Down Expand Up @@ -366,6 +378,17 @@ def start_uploading(self):
"""
if self._dispatcher is None:
raise RuntimeError("Must call create_experiment() before start_uploading()")

if self._one_shot:
if self._is_brand_new_experiment:
self._pre_create_runs_and_time_series()
else:
logger.warning(
"Please consider uploading to a new experiment instead of "
"an existing one, as the former allows for better upload "
"performance."
)

while True:
self._logdir_poll_rate_limiter.tick()
self._upload_once()
Expand All @@ -377,6 +400,58 @@ def start_uploading(self):
"without any uploadable data" % self._logdir
)

def _pre_create_runs_and_time_series(self):
"""
Iterates though the log dir to collect TensorboardRuns and
TensorboardTimeSeries that need to be created, and creates them in batch
to speed up uploading later on.
"""
self._logdir_loader_pre_create.synchronize_runs()
run_to_events = self._logdir_loader_pre_create.get_run_events()
if self._run_name_prefix:
run_to_events = {
self._run_name_prefix + k: v for k, v in run_to_events.items()
}

run_names = []
run_tag_name_to_time_series_proto = {}
for (run_name, events) in run_to_events.items():
run_names.append(run_name)
for event in events:
_filter_graph_defs(event)
for value in event.summary.value:
metadata, is_valid = self._request_sender.get_metadata_and_validate(
run_name, value
)
if not is_valid:
continue
if metadata.data_class == summary_pb2.DATA_CLASS_SCALAR:
value_type = (
tensorboard_time_series.TensorboardTimeSeries.ValueType.SCALAR
)
elif metadata.data_class == summary_pb2.DATA_CLASS_TENSOR:
value_type = (
tensorboard_time_series.TensorboardTimeSeries.ValueType.TENSOR
)
elif metadata.data_class == summary_pb2.DATA_CLASS_BLOB_SEQUENCE:
value_type = (
tensorboard_time_series.TensorboardTimeSeries.ValueType.BLOB_SEQUENCE
)

run_tag_name_to_time_series_proto[
(run_name, value.tag)
] = tensorboard_time_series.TensorboardTimeSeries(
display_name=value.tag,
value_type=value_type,
plugin_name=metadata.plugin_data.plugin_name,
plugin_data=metadata.plugin_data.content,
)

self._one_platform_resource_manager.batch_create_runs(run_names)
self._one_platform_resource_manager.batch_create_time_series(
run_tag_name_to_time_series_proto
)

def _upload_once(self):
"""Runs one upload cycle, sending zero or more RPCs."""
logger.info("Starting an upload cycle")
Expand Down Expand Up @@ -439,6 +514,7 @@ def __init__(
blob_rpc_rate_limiter: util.RateLimiter,
blob_storage_bucket: storage.Bucket,
blob_storage_folder: str,
one_platform_resource_manager: uploader_utils.OnePlatformResourceManager,
tracker: upload_tracker.UploadTracker,
):
"""Constructs _BatchedRequestSender for the given experiment resource.
Expand All @@ -456,16 +532,16 @@ def __init__(
Note the chunk stream is internally rate-limited by backpressure from
the server, so it is not a concern that we do not explicitly rate-limit
within the stream here.
one_platform_resource_manager: An instance of the One Platform
resource management class.
tracker: Upload tracker to track information about uploads.
"""
self._experiment_resource_name = experiment_resource_name
self._api = api
self._tag_metadata = {}
self._allowed_plugins = frozenset(allowed_plugins)
self._tracker = tracker
self._one_platform_resource_manager = uploader_utils.OnePlatformResourceManager(
self._experiment_resource_name, self._api
)
self._one_platform_resource_manager = one_platform_resource_manager
self._scalar_request_sender = _ScalarBatchedRequestSender(
experiment_resource_id=experiment_resource_name,
api=api,
Expand Down Expand Up @@ -516,6 +592,37 @@ def send_request(
RuntimeError: If no progress can be made because even a single
point is too large (say, due to a gigabyte-long tag name).
"""
metadata, is_valid = self.get_metadata_and_validate(run_name, value)
if not is_valid:
return
plugin_name = metadata.plugin_data.plugin_name
self._tracker.add_plugin_name(plugin_name)

if metadata.data_class == summary_pb2.DATA_CLASS_SCALAR:
self._scalar_request_sender.add_event(run_name, event, value, metadata)
elif metadata.data_class == summary_pb2.DATA_CLASS_TENSOR:
self._tensor_request_sender.add_event(run_name, event, value, metadata)
elif metadata.data_class == summary_pb2.DATA_CLASS_BLOB_SEQUENCE:
self._blob_request_sender.add_event(run_name, event, value, metadata)

def flush(self):
"""Flushes any events that have been stored."""
self._scalar_request_sender.flush()
self._tensor_request_sender.flush()
self._blob_request_sender.flush()

def get_metadata_and_validate(
self, run_name: str, value: tf.compat.v1.Summary.Value
) -> Tuple[tf.compat.v1.SummaryMetadata, bool]:
"""
:param run_name: Name of the run retrieved by
`LogdirLoader.get_run_events`
:param value: A single `tf.compat.v1.Summary.Value` from the event,
where there can be multiple values per event.
:return: (metadata, is_valid): a metadata derived from the value, and
whether the value itself is valid.
"""

time_series_key = (run_name, value.tag)

Expand All @@ -539,29 +646,16 @@ def send_request(
metadata.plugin_data.plugin_name,
value.metadata.plugin_data.plugin_name,
)
return
return metadata, False
if plugin_name not in self._allowed_plugins:
if first_in_time_series:
logger.info(
"Skipping time series %r with unsupported plugin name %r",
time_series_key,
plugin_name,
)
return
self._tracker.add_plugin_name(plugin_name)

if metadata.data_class == summary_pb2.DATA_CLASS_SCALAR:
self._scalar_request_sender.add_event(run_name, event, value, metadata)
elif metadata.data_class == summary_pb2.DATA_CLASS_TENSOR:
self._tensor_request_sender.add_event(run_name, event, value, metadata)
elif metadata.data_class == summary_pb2.DATA_CLASS_BLOB_SEQUENCE:
self._blob_request_sender.add_event(run_name, event, value, metadata)

def flush(self):
"""Flushes any events that have been stored."""
self._scalar_request_sender.flush()
self._tensor_request_sender.flush()
self._blob_request_sender.flush()
return metadata, False
return metadata, True


class _Dispatcher(object):
Expand Down
100 changes: 97 additions & 3 deletions google/cloud/aiplatform/tensorboard/uploader_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
import logging
import re
import time
from typing import Callable, Dict, Generator, Optional
from typing import Callable, Dict, Generator, Optional, List, Tuple
import uuid

from tensorboard.util import tb_logging
Expand All @@ -39,7 +39,6 @@
tensorboard_time_series_v1beta1 as tensorboard_time_series,
)
from google.cloud.aiplatform.compat.services import tensorboard_service_client_v1beta1
from google.cloud.aiplatform_v1beta1.types import TensorboardRun

TensorboardServiceClient = tensorboard_service_client_v1beta1.TensorboardServiceClient

Expand All @@ -66,6 +65,9 @@ def send_requests(run_name: str):
class OnePlatformResourceManager(object):
"""Helper class managing One Platform resources."""

CREATE_RUN_BATCH_SIZE = 1000
CREATE_TIME_SERIES_BATCH_SIZE = 1000

def __init__(self, experiment_resource_name: str, api: TensorboardServiceClient):
"""Constructor for OnePlatformResourceManager.
Expand All @@ -81,6 +83,96 @@ def __init__(self, experiment_resource_name: str, api: TensorboardServiceClient)
self._run_name_to_run_resource_name: Dict[str, str] = {}
self._run_tag_name_to_time_series_name: Dict[(str, str), str] = {}

def batch_create_runs(
self, run_names: List[str]
) -> List[tensorboard_run.TensorboardRun]:
"""Batch creates TensorboardRuns.
Args:
run_names: a list of run_names for creating the TensorboardRuns.
Returns:
the created TensorboardRuns
"""
batch_size = OnePlatformResourceManager.CREATE_RUN_BATCH_SIZE
created_runs = []
for i in range(0, len(run_names), batch_size):
one_batch_run_names = run_names[i : i + batch_size]
tb_run_requests = [
tensorboard_service.CreateTensorboardRunRequest(
parent=self._experiment_resource_name,
tensorboard_run=tensorboard_run.TensorboardRun(
display_name=run_name
),
tensorboard_run_id=str(uuid.uuid4()),
)
for run_name in one_batch_run_names
]

tb_runs = self._api.batch_create_tensorboard_runs(
parent=self._experiment_resource_name, requests=tb_run_requests,
).tensorboard_runs

self._run_name_to_run_resource_name.update(
{run.display_name: run.name for run in tb_runs}
)

created_runs.extend(tb_runs)

return created_runs

def batch_create_time_series(
self,
run_tag_name_to_time_series: Dict[
Tuple[str, str], tensorboard_time_series.TensorboardTimeSeries
],
) -> List[tensorboard_time_series.TensorboardTimeSeries]:
"""Batch creates TensorboardTimeSeries.
Args:
run_tag_name_to_time_series: a dictionary of
(run_name, tag_name) to TensorboardTimeSeries proto, containing
the TensorboardTimeSeries to create.
Returns:
the created TensorboardTimeSeries
"""
batch_size = OnePlatformResourceManager.CREATE_TIME_SERIES_BATCH_SIZE
run_tag_name_to_time_series_entries = list(run_tag_name_to_time_series.items())
run_resource_name_to_run_name = {
v: k for k, v in self._run_name_to_run_resource_name.items()
}
created_time_series = []
for i in range(0, len(run_tag_name_to_time_series_entries), batch_size):
requests = [
tensorboard_service.CreateTensorboardTimeSeriesRequest(
parent=self._run_name_to_run_resource_name[run_name],
tensorboard_time_series=time_series,
)
for (
(run_name, tag_name),
time_series,
) in run_tag_name_to_time_series_entries[i : i + batch_size]
]

time_series = self._api.batch_create_tensorboard_time_series(
parent=self._experiment_resource_name, requests=requests,
).tensorboard_time_series

self._run_tag_name_to_time_series_name.update(
{
(
run_resource_name_to_run_name[
ts.name[: ts.name.index("/timeSeries")]
],
ts.display_name,
): ts.name
for ts in time_series
}
)

created_time_series.extend(time_series)

return created_time_series

def get_run_resource_name(self, run_name: str) -> str:
"""
Get the resource name of the run if it exists, otherwise creates the run
Expand All @@ -99,7 +191,9 @@ def get_run_resource_name(self, run_name: str) -> str:
self._run_name_to_run_resource_name[run_name] = tb_run.name
return self._run_name_to_run_resource_name[run_name]

def _create_or_get_run_resource(self, run_name: str) -> TensorboardRun:
def _create_or_get_run_resource(
self, run_name: str
) -> tensorboard_run.TensorboardRun:
"""Creates a new run resource in current tensorboard experiment resource.
Args:
Expand Down
Loading

0 comments on commit c9f68c6

Please sign in to comment.