-
Notifications
You must be signed in to change notification settings - Fork 350
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
docs: Add temporal fusion transformer (TFT) model code sample.
PiperOrigin-RevId: 511322674
- Loading branch information
1 parent
f8052b8
commit 8ddc062
Showing
5 changed files
with
194 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
97 changes: 97 additions & 0 deletions
97
samples/model-builder/create_training_pipeline_forecasting_tft_sample.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
# Copyright 2022 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from typing import List, Optional | ||
|
||
from google.cloud import aiplatform | ||
|
||
|
||
# [START aiplatform_sdk_create_training_pipeline_forecasting_tft_sample] | ||
def create_training_pipeline_forecasting_temporal_fusion_transformer_sample( | ||
project: str, | ||
display_name: str, | ||
dataset_id: str, | ||
location: str = "us-central1", | ||
model_display_name: str = "my_model", | ||
target_column: str = "target_column", | ||
time_column: str = "date", | ||
time_series_identifier_column: str = "time_series_id", | ||
unavailable_at_forecast_columns: List[str] = [], | ||
available_at_forecast_columns: List[str] = [], | ||
forecast_horizon: int = 1, | ||
data_granularity_unit: str = "week", | ||
data_granularity_count: int = 1, | ||
training_fraction_split: float = 0.8, | ||
validation_fraction_split: float = 0.1, | ||
test_fraction_split: float = 0.1, | ||
budget_milli_node_hours: int = 8000, | ||
timestamp_split_column_name: str = "timestamp_split", | ||
weight_column: str = "weight", | ||
time_series_attribute_columns: List[str] = [], | ||
context_window: int = 0, | ||
export_evaluated_data_items: bool = False, | ||
export_evaluated_data_items_bigquery_destination_uri: Optional[str] = None, | ||
export_evaluated_data_items_override_destination: bool = False, | ||
validation_options: Optional[str] = None, | ||
predefined_split_column_name: Optional[str] = None, | ||
sync: bool = True, | ||
): | ||
aiplatform.init(project=project, location=location) | ||
|
||
# Create training job | ||
forecasting_tft_job = aiplatform.TemporalFusionTransformerForecastingTrainingJob( | ||
display_name=display_name, | ||
optimization_objective="minimize-rmse", | ||
) | ||
|
||
# Retrieve existing dataset | ||
dataset = aiplatform.TimeSeriesDataset(dataset_id) | ||
|
||
# Run training job | ||
model = forecasting_tft_job.run( | ||
dataset=dataset, | ||
target_column=target_column, | ||
time_column=time_column, | ||
time_series_identifier_column=time_series_identifier_column, | ||
unavailable_at_forecast_columns=unavailable_at_forecast_columns, | ||
available_at_forecast_columns=available_at_forecast_columns, | ||
forecast_horizon=forecast_horizon, | ||
data_granularity_unit=data_granularity_unit, | ||
data_granularity_count=data_granularity_count, | ||
training_fraction_split=training_fraction_split, | ||
validation_fraction_split=validation_fraction_split, | ||
test_fraction_split=test_fraction_split, | ||
predefined_split_column_name=predefined_split_column_name, | ||
timestamp_split_column_name=timestamp_split_column_name, | ||
weight_column=weight_column, | ||
time_series_attribute_columns=time_series_attribute_columns, | ||
context_window=context_window, | ||
export_evaluated_data_items=export_evaluated_data_items, | ||
export_evaluated_data_items_bigquery_destination_uri=export_evaluated_data_items_bigquery_destination_uri, | ||
export_evaluated_data_items_override_destination=export_evaluated_data_items_override_destination, | ||
validation_options=validation_options, | ||
budget_milli_node_hours=budget_milli_node_hours, | ||
model_display_name=model_display_name, | ||
sync=sync, | ||
) | ||
|
||
model.wait() | ||
|
||
print(model.display_name) | ||
print(model.resource_name) | ||
print(model.uri) | ||
return model | ||
|
||
|
||
# [END aiplatform_sdk_create_training_pipeline_forecasting_tft_sample] |
82 changes: 82 additions & 0 deletions
82
samples/model-builder/create_training_pipeline_forecasting_tft_sample_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
# Copyright 2022 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import create_training_pipeline_forecasting_tft_sample | ||
import test_constants as constants | ||
|
||
|
||
def test_create_training_pipeline_forecasting_tft_sample( | ||
mock_sdk_init, | ||
mock_time_series_dataset, | ||
mock_get_automl_forecasting_tft_training_job, | ||
mock_run_automl_forecasting_tft_training_job, | ||
mock_get_time_series_dataset, | ||
): | ||
create_training_pipeline_forecasting_tft_sample.create_training_pipeline_forecasting_temporal_fusion_transformer_sample( | ||
project=constants.PROJECT, | ||
display_name=constants.DISPLAY_NAME, | ||
dataset_id=constants.RESOURCE_ID, | ||
model_display_name=constants.DISPLAY_NAME_2, | ||
target_column=constants.TABULAR_TARGET_COLUMN, | ||
training_fraction_split=constants.TRAINING_FRACTION_SPLIT, | ||
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT, | ||
test_fraction_split=constants.TEST_FRACTION_SPLIT, | ||
budget_milli_node_hours=constants.BUDGET_MILLI_NODE_HOURS_8000, | ||
timestamp_split_column_name=constants.TIMESTAMP_SPLIT_COLUMN_NAME, | ||
weight_column=constants.WEIGHT_COLUMN, | ||
time_series_attribute_columns=constants.TIME_SERIES_ATTRIBUTE_COLUMNS, | ||
context_window=constants.CONTEXT_WINDOW, | ||
export_evaluated_data_items=constants.EXPORT_EVALUATED_DATA_ITEMS, | ||
export_evaluated_data_items_bigquery_destination_uri=constants.EXPORT_EVALUATED_DATA_ITEMS_BIGQUERY_DESTINATION_URI, | ||
export_evaluated_data_items_override_destination=constants.EXPORT_EVALUATED_DATA_ITEMS_OVERRIDE_DESTINATION, | ||
validation_options=constants.VALIDATION_OPTIONS, | ||
predefined_split_column_name=constants.PREDEFINED_SPLIT_COLUMN_NAME, | ||
) | ||
|
||
mock_get_time_series_dataset.assert_called_once_with(constants.RESOURCE_ID) | ||
|
||
mock_sdk_init.assert_called_once_with( | ||
project=constants.PROJECT, location=constants.LOCATION | ||
) | ||
mock_get_automl_forecasting_tft_training_job.assert_called_once_with( | ||
display_name=constants.DISPLAY_NAME, | ||
optimization_objective="minimize-rmse", | ||
) | ||
mock_run_automl_forecasting_tft_training_job.assert_called_once_with( | ||
dataset=mock_time_series_dataset, | ||
target_column=constants.TABULAR_TARGET_COLUMN, | ||
time_column=constants.FORECASTNG_TIME_COLUMN, | ||
time_series_identifier_column=constants.FORECASTNG_TIME_SERIES_IDENTIFIER_COLUMN, | ||
unavailable_at_forecast_columns=constants.FORECASTNG_UNAVAILABLE_AT_FORECAST_COLUMNS, | ||
available_at_forecast_columns=constants.FORECASTNG_AVAILABLE_AT_FORECAST_COLUMNS, | ||
forecast_horizon=constants.FORECASTNG_FORECAST_HORIZON, | ||
data_granularity_unit=constants.DATA_GRANULARITY_UNIT, | ||
data_granularity_count=constants.DATA_GRANULARITY_COUNT, | ||
training_fraction_split=constants.TRAINING_FRACTION_SPLIT, | ||
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT, | ||
test_fraction_split=constants.TEST_FRACTION_SPLIT, | ||
budget_milli_node_hours=constants.BUDGET_MILLI_NODE_HOURS_8000, | ||
model_display_name=constants.DISPLAY_NAME_2, | ||
timestamp_split_column_name=constants.TIMESTAMP_SPLIT_COLUMN_NAME, | ||
weight_column=constants.WEIGHT_COLUMN, | ||
time_series_attribute_columns=constants.TIME_SERIES_ATTRIBUTE_COLUMNS, | ||
context_window=constants.CONTEXT_WINDOW, | ||
export_evaluated_data_items=constants.EXPORT_EVALUATED_DATA_ITEMS, | ||
export_evaluated_data_items_bigquery_destination_uri=constants.EXPORT_EVALUATED_DATA_ITEMS_BIGQUERY_DESTINATION_URI, | ||
export_evaluated_data_items_override_destination=constants.EXPORT_EVALUATED_DATA_ITEMS_OVERRIDE_DESTINATION, | ||
validation_options=constants.VALIDATION_OPTIONS, | ||
predefined_split_column_name=constants.PREDEFINED_SPLIT_COLUMN_NAME, | ||
sync=True, | ||
) |