-
Notifications
You must be signed in to change notification settings - Fork 348
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: LLM - Added support for model distillation
PiperOrigin-RevId: 590578502
- Loading branch information
1 parent
cfc5cba
commit 28925e9
Showing
3 changed files
with
386 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
from typing import Optional, Union | ||
|
||
from google.cloud import aiplatform | ||
from google.cloud.aiplatform import initializer as aiplatform_initializer | ||
from vertexai.language_models import _language_models | ||
from vertexai.language_models import _language_models as tuning | ||
|
||
|
||
class DistillationMixin: | ||
_DISTILLATION_PIPELINE_URI = ( | ||
"https://us-kfp.pkg.dev/ml-pipeline/research/distillation/v1.0.0" | ||
) | ||
|
||
def distill_from( | ||
self, | ||
*, | ||
dataset: str, | ||
teacher_model: Union[str, _language_models._TextGenerationModel], | ||
train_steps: Optional[int] = None, | ||
learning_rate_multiplier: Optional[float] = None, | ||
evaluation_spec: Optional[tuning.TuningEvaluationSpec] = None, | ||
accelerator_type: Optional[tuning._ACCELERATOR_TYPE_TYPE] = None, | ||
model_display_name: Optional[str] = None, | ||
): | ||
"""Tunes a smaller model with help from another bigger model. | ||
Args: | ||
dataset: A URI pointing to data in JSON lines format. | ||
teacher_model: The teacher model to use for distillation. | ||
train_steps: Number of training batches to use (batch size is 8 samples). | ||
learning_rate_multiplier: Learning rate multiplier to use in tuning. | ||
evaluation_spec: Specification for the model evaluation during tuning. | ||
accelerator_type: Type of accelerator to use. Can be "TPU" or "GPU". | ||
model_display_name: Custom display name for the tuned model. | ||
Returns: | ||
A tuning job for distillation. | ||
Raises: | ||
RuntimeError: If the model does not support distillation. | ||
""" | ||
if "/models/" not in self._endpoint_name: | ||
raise RuntimeError( | ||
f"Model does not support distillation: {self._endpoint_name}" | ||
) | ||
student_short_model_id = self._endpoint_name.split("/")[-1] | ||
|
||
if isinstance(teacher_model, str): | ||
teacher_short_model_id = teacher_model | ||
elif isinstance(teacher_model, _language_models._LanguageModel): | ||
if "/models/" not in teacher_model._endpoint_name: | ||
raise RuntimeError( | ||
f"Teacher model does not support distillation: {teacher_model._endpoint_name}" | ||
) | ||
teacher_short_model_id = teacher_model._endpoint_name.split("/")[-1] | ||
else: | ||
raise RuntimeError(f"Unsupported teacher model type: {teacher_model}") | ||
|
||
pipeline_arguments = { | ||
"teacher_model_reference": teacher_short_model_id, | ||
"student_model_reference": student_short_model_id, | ||
"dataset_uri": dataset, | ||
"project": aiplatform_initializer.global_config.project, | ||
"location": aiplatform_initializer.global_config.location, | ||
} | ||
if train_steps is not None: | ||
pipeline_arguments["train_steps"] = train_steps | ||
if learning_rate_multiplier is not None: | ||
pipeline_arguments["learning_rate_multiplier"] = learning_rate_multiplier | ||
if evaluation_spec is not None: | ||
pipeline_arguments["evaluation_data_uri"] = evaluation_spec.evaluation_data | ||
pipeline_arguments[ | ||
"evaluation_interval" | ||
] = evaluation_spec.evaluation_interval | ||
pipeline_arguments[ | ||
"enable_early_stopping" | ||
] = evaluation_spec.enable_early_stopping | ||
pipeline_arguments[ | ||
"enable_checkpoint_selection" | ||
] = evaluation_spec.enable_checkpoint_selection | ||
pipeline_arguments["tensorboard_resource_id"] = evaluation_spec.tensorboard | ||
# pipeline_parameter_values["evaluation_output_root_dir"] = ... | ||
if accelerator_type is not None: | ||
pipeline_arguments["accelerator_type"] = accelerator_type | ||
if aiplatform_initializer.global_config.encryption_spec_key_name is not None: | ||
pipeline_arguments[ | ||
"encryption_spec_key_name" | ||
] = aiplatform_initializer.global_config.encryption_spec_key_name | ||
if model_display_name is None: | ||
model_display_name = ( | ||
f"{student_short_model_id}" | ||
f" distilled from {teacher_short_model_id}" | ||
) | ||
pipeline_arguments["model_display_name"] = model_display_name | ||
# # Not exposing these parameters: | ||
# temperature: Optional[float] = None, | ||
# max_context_length: Optional[int] = None, | ||
# tpu_training_skip_cmek: Optional[bool] = None, | ||
# api_endpoint: Optional[str] = None, | ||
# version: Optional[str] = None, | ||
pipeline_job = aiplatform.PipelineJob( | ||
template_path=self._DISTILLATION_PIPELINE_URI, | ||
display_name=None, | ||
parameter_values=pipeline_arguments, | ||
) | ||
pipeline_job.submit() | ||
tuning_job = tuning._LanguageModelTuningJob( | ||
base_model=self, | ||
job=pipeline_job, | ||
) | ||
return tuning_job |
Oops, something went wrong.