Skip to content

Commit

Permalink
feat: adds function/method enhancements, demo samples (#122)
Browse files Browse the repository at this point in the history
* feat: adds function/method enhancements
  • Loading branch information
telpirion authored Dec 17, 2020
1 parent dd8677c commit 1a302d2
Show file tree
Hide file tree
Showing 17 changed files with 331 additions and 39 deletions.
3 changes: 3 additions & 0 deletions .github/CODEOWNERS
Validating CODEOWNERS rules …
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,6 @@

# The python-samples-owners team is the default owner for samples
/samples/**/*.py @dizcology @googleapis/python-samples-owners

# The enhanced client library tests are owned by @telpirion
/tests/unit/enhanced_library/*.py @telpirion
3 changes: 3 additions & 0 deletions google/cloud/aiplatform/helpers/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from google.cloud.aiplatform.helpers import value_converter

__all__ = (value_converter,)
70 changes: 70 additions & 0 deletions google/cloud/aiplatform/helpers/_decorators.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from google.cloud.aiplatform.helpers import value_converter

from proto.marshal import Marshal
from proto.marshal.rules.struct import ValueRule
from google.protobuf.struct_pb2 import Value


class ConversionValueRule(ValueRule):
def to_python(self, value, *, absent: bool = None):
return super().to_python(value, absent=absent)

def to_proto(self, value):

# Need to check whether value is an instance
# of an enhanced type
if callable(getattr(value, "to_value", None)):
return value.to_value()
else:
return super().to_proto(value)


def _add_methods_to_classes_in_package(pkg):
classes = dict(
[(name, cls) for name, cls in pkg.__dict__.items() if isinstance(cls, type)]
)

for class_name, cls in classes.items():
# Add to_value() method to class with docstring
setattr(cls, "to_value", value_converter.to_value)
cls.to_value.__doc__ = value_converter.to_value.__doc__

# Add from_value() method to class with docstring
setattr(cls, "from_value", _add_from_value_to_class(cls))
cls.from_value.__doc__ = value_converter.from_value.__doc__

# Add from_map() method to class with docstring
setattr(cls, "from_map", _add_from_map_to_class(cls))
cls.from_map.__doc__ = value_converter.from_map.__doc__


def _add_from_value_to_class(cls):
def _from_value(value):
return value_converter.from_value(cls, value)

return _from_value


def _add_from_map_to_class(cls):
def _from_map(map_):
return value_converter.from_map(cls, map_)

return _from_map


marshal = Marshal(name="google.cloud.aiplatform.v1beta1")
marshal.register(Value, ConversionValueRule(marshal=marshal))
60 changes: 60 additions & 0 deletions google/cloud/aiplatform/helpers/value_converter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from google.protobuf.struct_pb2 import Value
from google.protobuf import json_format
from proto.marshal.collections.maps import MapComposite
from proto.marshal import Marshal
from proto import Message
from proto.message import MessageMeta


def to_value(self: Message) -> Value:
"""Converts a message type to a :class:`~google.protobuf.struct_pb2.Value` object.
Args:
message: the message to convert
Returns:
the message as a :class:`~google.protobuf.struct_pb2.Value` object
"""
tmp_dict = json_format.MessageToDict(self._pb)
return json_format.ParseDict(tmp_dict, Value())


def from_value(cls: MessageMeta, value: Value) -> Message:
"""Creates instance of class from a :class:`~google.protobuf.struct_pb2.Value` object.
Args:
value: a :class:`~google.protobuf.struct_pb2.Value` object
Returns:
Instance of class
"""
value_dict = json_format.MessageToDict(value)
return json_format.ParseDict(value_dict, cls()._pb)


def from_map(cls: MessageMeta, map_: MapComposite) -> Message:
"""Creates instance of class from a :class:`~proto.marshal.collections.maps.MapComposite` object.
Args:
map_: a :class:`~proto.marshal.collections.maps.MapComposite` object
Returns:
Instance of class
"""
marshal = Marshal(name="marshal")
pb = marshal.to_proto(Value, map_)
return from_value(cls, pb)
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from google.cloud.aiplatform.helpers import _decorators
import google.cloud.aiplatform.v1beta1.schema.predict.instance_v1beta1.types as pkg

from google.cloud.aiplatform.v1beta1.schema.predict.instance_v1beta1.types.image_classification import (
ImageClassificationPredictionInstance,
Expand Down Expand Up @@ -54,3 +56,4 @@
"VideoClassificationPredictionInstance",
"VideoObjectTrackingPredictionInstance",
)
_decorators._add_methods_to_classes_in_package(pkg)
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from google.cloud.aiplatform.helpers import _decorators
import google.cloud.aiplatform.v1beta1.schema.predict.params_v1beta1.types as pkg

from google.cloud.aiplatform.v1beta1.schema.predict.params_v1beta1.types.image_classification import (
ImageClassificationPredictionParams,
Expand Down Expand Up @@ -42,3 +44,4 @@
"VideoClassificationPredictionParams",
"VideoObjectTrackingPredictionParams",
)
_decorators._add_methods_to_classes_in_package(pkg)
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from google.cloud.aiplatform.helpers import _decorators
import google.cloud.aiplatform.v1beta1.schema.predict.prediction_v1beta1.types as pkg

from google.cloud.aiplatform.v1beta1.schema.predict.prediction_v1beta1.types.classification import (
ClassificationPredictionResult,
Expand Down Expand Up @@ -62,3 +64,4 @@
"VideoClassificationPredictionResult",
"VideoObjectTrackingPredictionResult",
)
_decorators._add_methods_to_classes_in_package(pkg)
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,10 @@

import proto # type: ignore


from google.cloud.aiplatform.v1beta1.schema.predict.instance import text_sentiment_pb2 as gcaspi_text_sentiment # type: ignore
# DO NOT OVERWRITE FOLLOWING LINE: it was manually edited.
from google.cloud.aiplatform.v1beta1.schema.predict.instance import (
TextSentimentPredictionInstance,
)


__protobuf__ = proto.module(
Expand Down Expand Up @@ -57,9 +59,7 @@ class Prediction(proto.Message):
sentiment = proto.Field(proto.INT32, number=1)

instance = proto.Field(
proto.MESSAGE,
number=1,
message=gcaspi_text_sentiment.TextSentimentPredictionInstance,
proto.MESSAGE, number=1, message=TextSentimentPredictionInstance,
)

prediction = proto.Field(proto.MESSAGE, number=2, message=Prediction,)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from google.cloud.aiplatform.helpers import _decorators
import google.cloud.aiplatform.v1beta1.schema.trainingjob.definition_v1beta1.types as pkg

from google.cloud.aiplatform.v1beta1.schema.trainingjob.definition_v1beta1.types.automl_forecasting import (
AutoMlForecasting,
Expand Down Expand Up @@ -130,3 +132,4 @@
"AutoMlVideoObjectTrackingInputs",
"ExportEvaluatedDataItemsConfig",
)
_decorators._add_methods_to_classes_in_package(pkg)
Original file line number Diff line number Diff line change
Expand Up @@ -78,14 +78,14 @@ class AutoMlForecastingInputs(proto.Message):
function over the validation set.
The supported optimization objectives:
"minimize-rmse" (default) - Minimize root-
"minimize-rmse" (default) - Minimize root-
mean-squared error (RMSE). "minimize-mae" -
Minimize mean-absolute error (MAE). "minimize-
rmsle" - Minimize root-mean-squared log error
(RMSLE). "minimize-rmspe" - Minimize root-
mean-squared percentage error (RMSPE).
"minimize-wape-mae" - Minimize the combination
of weighted absolute percentage error (WAPE)
of weighted absolute percentage error (WAPE)
and mean-absolute-error (MAE).
train_budget_milli_node_hours (int):
Required. The train budget of creating this
Expand Down Expand Up @@ -418,11 +418,11 @@ class Period(proto.Message):
unit (str):
The time granularity unit of this time
period. The supported unit are:
"hour"
"day"
"week"
"month"
"year".
"hour"
"day"
"week"
"month"
"year".
quantity (int):
The number of units per period, e.g. 3 weeks
or 2 months.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ class AutoMlTablesInputs(proto.Message):
produce. "classification" - Predict one out of
multiple target values is
picked for each row.
"regression" - Predict a value based on its
"regression" - Predict a value based on its
relation to other values. This
type is available only to columns that contain
semantically numeric values, i.e. integers or
Expand All @@ -87,22 +87,22 @@ class AutoMlTablesInputs(proto.Message):
the prediction type. If the field is not set, a
default objective function is used.
classification (binary):
"maximize-au-roc" (default) - Maximize the
"maximize-au-roc" (default) - Maximize the
area under the receiver
operating characteristic (ROC) curve.
"minimize-log-loss" - Minimize log loss.
"maximize-au-prc" - Maximize the area under
"maximize-au-prc" - Maximize the area under
the precision-recall curve. "maximize-
precision-at-recall" - Maximize precision for a
specified
recall value. "maximize-recall-at-precision" -
Maximize recall for a specified
precision value.
classification (multi-class):
"minimize-log-loss" (default) - Minimize log
"minimize-log-loss" (default) - Minimize log
loss.
regression:
"minimize-rmse" (default) - Minimize root-
"minimize-rmse" (default) - Minimize root-
mean-squared error (RMSE). "minimize-mae" -
Minimize mean-absolute error (MAE). "minimize-
rmsle" - Minimize root-mean-squared log error
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,8 @@

# [START aiplatform_create_training_pipeline_image_classification_sample]
from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
from google.cloud.aiplatform.v1beta1.schema.trainingjob import definition
ModelType = definition.AutoMlImageClassificationInputs().ModelType


def create_training_pipeline_image_classification_sample(
Expand All @@ -31,13 +31,14 @@ def create_training_pipeline_image_classification_sample(
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
training_task_inputs_dict = {
"multiLabel": True,
"modelType": "CLOUD",
"budgetMilliNodeHours": 8000,
"disableEarlyStopping": False,
}
training_task_inputs = json_format.ParseDict(training_task_inputs_dict, Value())

icn_training_inputs = definition.AutoMlImageClassificationInputs(
multi_label=True,
model_type=ModelType.CLOUD,
budget_milli_node_hours=8000,
disable_early_stopping=False
)
training_task_inputs = icn_training_inputs.to_value()

training_pipeline = {
"display_name": display_name,
Expand Down
29 changes: 17 additions & 12 deletions samples/snippets/predict_image_classification_sample.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,9 @@
import base64

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
from google.cloud.aiplatform.v1beta1.schema.predict import instance
from google.cloud.aiplatform.v1beta1.schema.predict import params
from google.cloud.aiplatform.v1beta1.schema.predict import prediction


def predict_image_classification_sample(
Expand All @@ -37,25 +38,29 @@ def predict_image_classification_sample(

# The format of each instance should conform to the deployed model's prediction input schema.
encoded_content = base64.b64encode(file_content).decode("utf-8")
instance_dict = {"content": encoded_content}

instance = json_format.ParseDict(instance_dict, Value())
instances = [instance]
# See gs://google-cloud-aiplatform/schema/predict/params/image_classification_1.0.0.yaml for the format of the parameters.
parameters_dict = {"confidence_threshold": 0.5, "max_predictions": 5}
parameters = json_format.ParseDict(parameters_dict, Value())
instance_obj = instance.ImageClassificationPredictionInstance(
content=encoded_content)

instance_val = instance_obj.to_value()
instances = [instance_val]

params_obj = params.ImageClassificationPredictionParams(
confidence_threshold=0.5, max_predictions=5)

endpoint = client.endpoint_path(
project=project, location=location, endpoint=endpoint_id
)
response = client.predict(
endpoint=endpoint, instances=instances, parameters=parameters
endpoint=endpoint, instances=instances, parameters=params_obj
)
print("response")
print(" deployed_model_id:", response.deployed_model_id)
print("\tdeployed_model_id:", response.deployed_model_id)
# See gs://google-cloud-aiplatform/schema/predict/prediction/classification.yaml for the format of the predictions.
predictions = response.predictions
for prediction in predictions:
print(" prediction:", dict(prediction))
for prediction_ in predictions:
prediction_obj = prediction.ClassificationPredictionResult.from_map(prediction_)
print(prediction_obj)


# [END aiplatform_predict_image_classification_sample]
Original file line number Diff line number Diff line change
Expand Up @@ -31,4 +31,4 @@ def test_ucaip_generated_predict_image_classification_sample(capsys):
)

out, _ = capsys.readouterr()
assert 'string_value: "daisy"' in out
assert 'deployed_model_id:' in out
Loading

0 comments on commit 1a302d2

Please sign in to comment.