Skip to content

Commit

Permalink
feat: expose env var in cust training class run func args
Browse files Browse the repository at this point in the history
  • Loading branch information
morgandu committed May 6, 2021
1 parent 0f184f7 commit 14186af
Show file tree
Hide file tree
Showing 2 changed files with 172 additions and 0 deletions.
132 changes: 132 additions & 0 deletions google/cloud/aiplatform/training_jobs.py
Original file line number Diff line number Diff line change
Expand Up @@ -1806,6 +1806,7 @@ def run(
service_account: Optional[str] = None,
bigquery_destination: Optional[str] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
replica_count: int = 0,
machine_type: str = "n1-standard-4",
accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED",
Expand Down Expand Up @@ -1881,6 +1882,13 @@ def run(
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.
AI Platform sets the following environment variables when it runs your training code:
- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand All @@ -1901,6 +1909,16 @@ def run(
- AIP_TEST_DATA_URI = "bigquery_destination.dataset_*.test"
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.
environment_variables = {
'MY_KEY': 'MY_VALUE'
}
replica_count (int):
The number of worker replicas. If replica count = 1 then one chief
replica will be provisioned. If replica_count > 1 the remainder will be
Expand Down Expand Up @@ -1961,6 +1979,7 @@ def run(
worker_pool_specs=worker_pool_specs,
managed_model=managed_model,
args=args,
environment_variables=environment_variables,
base_output_dir=base_output_dir,
service_account=service_account,
bigquery_destination=bigquery_destination,
Expand All @@ -1987,6 +2006,7 @@ def _run(
worker_pool_specs: _DistributedTrainingSpec,
managed_model: Optional[gca_model.Model] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
base_output_dir: Optional[str] = None,
service_account: Optional[str] = None,
bigquery_destination: Optional[str] = None,
Expand Down Expand Up @@ -2019,9 +2039,26 @@ def _run(
Model proto if this script produces a Managed Model.
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.
environment_variables = {
'MY_KEY': 'MY_VALUE'
}
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.
AI Platform sets the following environment variables when it runs your training code:
- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand Down Expand Up @@ -2084,6 +2121,13 @@ def _run(
if args:
spec["pythonPackageSpec"]["args"] = args

if environment_variables:
env = [
gca_env_var.EnvVar(name=str(key), value=str(value))
for key, value in environment_variables.items()
]
spec["pythonPackageSpec"]["env"] = env

(
training_task_inputs,
base_output_dir,
Expand Down Expand Up @@ -2335,6 +2379,7 @@ def run(
service_account: Optional[str] = None,
bigquery_destination: Optional[str] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
replica_count: int = 0,
machine_type: str = "n1-standard-4",
accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED",
Expand Down Expand Up @@ -2403,6 +2448,13 @@ def run(
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.
AI Platform sets the following environment variables when it runs your training code:
- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand All @@ -2423,6 +2475,16 @@ def run(
- AIP_TEST_DATA_URI = "bigquery_destination.dataset_*.test"
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.
environment_variables = {
'MY_KEY': 'MY_VALUE'
}
replica_count (int):
The number of worker replicas. If replica count = 1 then one chief
replica will be provisioned. If replica_count > 1 the remainder will be
Expand Down Expand Up @@ -2482,6 +2544,7 @@ def run(
worker_pool_specs=worker_pool_specs,
managed_model=managed_model,
args=args,
environment_variables=environment_variables,
base_output_dir=base_output_dir,
service_account=service_account,
bigquery_destination=bigquery_destination,
Expand All @@ -2507,6 +2570,7 @@ def _run(
worker_pool_specs: _DistributedTrainingSpec,
managed_model: Optional[gca_model.Model] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
base_output_dir: Optional[str] = None,
service_account: Optional[str] = None,
bigquery_destination: Optional[str] = None,
Expand Down Expand Up @@ -2536,9 +2600,26 @@ def _run(
Model proto if this script produces a Managed Model.
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.
environment_variables = {
'MY_KEY': 'MY_VALUE'
}
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.
AI Platform sets the following environment variables when it runs your training code:
- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand Down Expand Up @@ -2594,6 +2675,13 @@ def _run(
if args:
spec["containerSpec"]["args"] = args

if environment_variables:
env = [
gca_env_var.EnvVar(name=str(key), value=str(value))
for key, value in environment_variables.items()
]
spec["containerSpec"]["env"] = env

(
training_task_inputs,
base_output_dir,
Expand Down Expand Up @@ -3605,6 +3693,7 @@ def run(
service_account: Optional[str] = None,
bigquery_destination: Optional[str] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
replica_count: int = 0,
machine_type: str = "n1-standard-4",
accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED",
Expand Down Expand Up @@ -3673,6 +3762,13 @@ def run(
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.
AI Platform sets the following environment variables when it runs your training code:
- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand All @@ -3693,6 +3789,16 @@ def run(
- AIP_TEST_DATA_URI = "bigquery_destination.dataset_*.test"
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.
environment_variables = {
'MY_KEY': 'MY_VALUE'
}
replica_count (int):
The number of worker replicas. If replica count = 1 then one chief
replica will be provisioned. If replica_count > 1 the remainder will be
Expand Down Expand Up @@ -3747,6 +3853,7 @@ def run(
worker_pool_specs=worker_pool_specs,
managed_model=managed_model,
args=args,
environment_variables=environment_variables,
base_output_dir=base_output_dir,
service_account=service_account,
training_fraction_split=training_fraction_split,
Expand All @@ -3772,6 +3879,7 @@ def _run(
worker_pool_specs: _DistributedTrainingSpec,
managed_model: Optional[gca_model.Model] = None,
args: Optional[List[Union[str, float, int]]] = None,
environment_variables: Optional[Dict[str, str]] = None,
base_output_dir: Optional[str] = None,
service_account: Optional[str] = None,
training_fraction_split: float = 0.8,
Expand Down Expand Up @@ -3802,9 +3910,26 @@ def _run(
Model proto if this script produces a Managed Model.
args (List[Unions[str, int, float]]):
Command line arguments to be passed to the Python script.
environment_variables (Dict[str, str]):
Environment variables to be passed to the container.
Should be a dictionary where keys are environment variable names
and values are environment variable values for those names.
At most 10 environment variables can be specified.
The Name of the environment variable must be unique.
environment_variables = {
'MY_KEY': 'MY_VALUE'
}
base_output_dir (str):
GCS output directory of job. If not provided a
timestamped directory in the staging directory will be used.
AI Platform sets the following environment variables when it runs your training code:
- AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
- AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
service_account (str):
Specifies the service account for workload run-as account.
Users submitting jobs must have act-as permission on this run-as account.
Expand Down Expand Up @@ -3846,6 +3971,13 @@ def _run(
if args:
spec["pythonPackageSpec"]["args"] = args

if environment_variables:
env = [
gca_env_var.EnvVar(name=str(key), value=str(value))
for key, value in environment_variables.items()
]
spec["pythonPackageSpec"]["env"] = env

(
training_task_inputs,
base_output_dir,
Expand Down
Loading

0 comments on commit 14186af

Please sign in to comment.