Skip to content

Commit

Permalink
fix: construct the request directly in sample code
Browse files Browse the repository at this point in the history
  • Loading branch information
lclc19 committed Sep 16, 2021
1 parent a94f08b commit 02bbd39
Show file tree
Hide file tree
Showing 7 changed files with 95 additions and 101 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@ def batch_create_features_sample(
project: str,
featurestore_id: str,
entity_type_id: str,
requests: list,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
timeout: int = 300,
Expand All @@ -31,6 +30,34 @@ def batch_create_features_sample(
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.FeaturestoreServiceClient(client_options=client_options)
parent = f"projects/{project}/locations/{location}/featurestores/{featurestore_id}/entityTypes/{entity_type_id}"
requests=[
aiplatform.CreateFeatureRequest(
feature=aiplatform.Feature(
value_type=aiplatform.Feature.ValueType.INT64,
description="User age",
),
feature_id="age",
),
aiplatform.CreateFeatureRequest(
feature=aiplatform.Feature(
value_type=aiplatform.Feature.ValueType.STRING,
description="User gender",
monitoring_config=aiplatform.FeaturestoreMonitoringConfig(
snapshot_analysis=aiplatform.FeaturestoreMonitoringConfig.SnapshotAnalysis(
disabled=True,
),
),
),
feature_id="gender",
),
aiplatform.CreateFeatureRequest(
feature=aiplatform.Feature(
value_type=aiplatform.Feature.ValueType.STRING_ARRAY,
description="An array of genres that this user liked",
),
feature_id="liked_genres",
),
]
batch_create_features_request = aiplatform.BatchCreateFeaturesRequest(
parent=parent, requests=requests
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,49 +16,43 @@
from uuid import uuid4

import batch_create_features_sample
from google.cloud import aiplatform_v1beta1 as aiplatform
import create_entity_type_sample

import pytest

import helpers

PROJECT_ID = os.getenv("BUILD_SPECIFIC_GCLOUD_PROJECT")


@pytest.fixture(scope="function", autouse=True)
def teardown(teardown_features):
def teardown(teardown_entity_type):
yield


def setup_temp_entity_type(featurestore_id, entity_type_id, capsys):
create_entity_type_sample.create_entity_type_sample(
project=PROJECT_ID,
featurestore_id=featurestore_id,
entity_type_id=entity_type_id,
)
out, _ = capsys.readouterr()
assert "create_entity_type_response" in out
return helpers.get_featurestore_resource_name(out)


def test_ucaip_generated_batch_create_features_sample_vision(capsys, shared_state):
featurestore_id = "perm_sample_featurestore"
entity_type_id = "perm_sample_entity_type"
requests = [
aiplatform.CreateFeatureRequest(
feature=aiplatform.Feature(
value_type=aiplatform.Feature.ValueType.STRING,
description="lorem ipsum",
),
feature_id=f"gender_{uuid4()}".replace("-", "_")[:60],
),
aiplatform.CreateFeatureRequest(
feature=aiplatform.Feature(
value_type=aiplatform.Feature.ValueType.STRING_ARRAY,
description="lorem ipsum",
),
feature_id=f"liked_genres_{uuid4()}".replace("-", "_")[:60],
),
]
entity_type_id = f"users_{uuid4()}".replace("-", "_")[:60]
entity_type_name = setup_temp_entity_type(featurestore_id, entity_type_id, capsys)
location = "us-central1"
batch_create_features_sample.batch_create_features_sample(
project=PROJECT_ID,
featurestore_id=featurestore_id,
entity_type_id=entity_type_id,
requests=requests,
location=location,
)
out, _ = capsys.readouterr()
assert "batch_create_features_response" in out

parent = f"projects/{PROJECT_ID}/locations/{location}/featurestores/{featurestore_id}/entityTypes/{entity_type_id}/features/"
shared_state["feature_names"] = []
for request in requests:
shared_state["feature_names"].append(parent + request.feature_id)
shared_state["entity_type_name"] = entity_type_name
Original file line number Diff line number Diff line change
Expand Up @@ -19,9 +19,8 @@
def batch_read_feature_values_sample(
project: str,
featurestore_id: str,
csv_read_instances: aiplatform.CsvSource,
destination: aiplatform.FeatureValueDestination,
entity_type_specs: list,
input_csv_file: str,
destination_table_uri: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
timeout: int = 300,
Expand All @@ -34,6 +33,38 @@ def batch_read_feature_values_sample(
featurestore = (
f"projects/{project}/locations/{location}/featurestores/{featurestore_id}"
)
csv_read_instances = aiplatform.CsvSource(
gcs_source=aiplatform.GcsSource(uris=[input_csv_file])
)
destination = aiplatform.FeatureValueDestination(
bigquery_destination=aiplatform.BigQueryDestination(
# Output to BigQuery table created earlier
output_uri=destination_table_uri
)
)
entity_type_specs = [
aiplatform.BatchReadFeatureValuesRequest.EntityTypeSpec(
# Read the 'age', 'gender' and 'liked_genres' features from the 'perm_users' entity
entity_type_id="perm_users",
feature_selector=aiplatform.FeatureSelector(
id_matcher=aiplatform.IdMatcher(
ids=[
# features, use "*" if you want to select all features within this entity type
"age",
"gender",
"liked_genres",
]
)
),
),
aiplatform.BatchReadFeatureValuesRequest.EntityTypeSpec(
# Read the 'average_rating' and 'genres' features from the 'perm_movies' entity
entity_type_id="perm_movies",
feature_selector=aiplatform.FeatureSelector(
id_matcher=aiplatform.IdMatcher(ids=["average_rating", "genres"])
),
),
]
# Batch serving request from CSV
batch_read_feature_values_request = aiplatform.BatchReadFeatureValuesRequest(
featurestore=featurestore,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@
import os

import batch_read_feature_values_sample
from google.cloud import aiplatform_v1beta1 as aiplatform
from google.cloud import bigquery

import pytest
Expand All @@ -36,14 +35,12 @@ def setup_test():
destination_data_set = "movie_predictions_" + datetime.now().strftime(
"%Y%m%d%H%M%S"
)

# Output table. Make sure that the table does NOT already exist; the BatchReadFeatureValues API cannot overwrite an existing table
destination_table_name = "training_data"
DESTINATION_PATTERN = "bq://{project}.{dataset}.{table}"
destination_table_uri = DESTINATION_PATTERN.format(
project=PROJECT_ID, dataset=destination_data_set, table=destination_table_name
)

# Create dataset
bq_client = bigquery.Client(project=PROJECT_ID)
dataset_id = "{}.{}".format(bq_client.project, destination_data_set)
Expand All @@ -56,47 +53,13 @@ def setup_test():

def test_ucaip_generated_batch_read_feature_values_sample_vision(capsys, shared_state):
destination_data_set, destination_table_uri = setup_test()

featurestore_id = "perm_sample_featurestore"
csv_read_instances = aiplatform.CsvSource(
gcs_source=aiplatform.GcsSource(uris=[INPUT_CSV_FILE])
)
destination = aiplatform.FeatureValueDestination(
bigquery_destination=aiplatform.BigQueryDestination(
# Output to BigQuery table created earlier
output_uri=destination_table_uri
)
)
entity_type_specs = [
aiplatform.BatchReadFeatureValuesRequest.EntityTypeSpec(
# Read the 'age', 'gender' and 'liked_genres' features from the 'perm_users' entity
entity_type_id="perm_users",
feature_selector=aiplatform.FeatureSelector(
id_matcher=aiplatform.IdMatcher(
ids=[
# features, use "*" if you want to select all features within this entity type
"age",
"gender",
"liked_genres",
]
)
),
),
aiplatform.BatchReadFeatureValuesRequest.EntityTypeSpec(
# Read the 'average_rating' and 'genres' features from the 'perm_movies' entity
entity_type_id="perm_movies",
feature_selector=aiplatform.FeatureSelector(
id_matcher=aiplatform.IdMatcher(ids=["average_rating", "genres"])
),
),
]

batch_read_feature_values_sample.batch_read_feature_values_sample(
project=PROJECT_ID,
featurestore_id=featurestore_id,
csv_read_instances=csv_read_instances,
destination=destination,
entity_type_specs=entity_type_specs,
input_csv_file=INPUT_CSV_FILE,
destination_table_uri=destination_table_uri,
)
out, _ = capsys.readouterr()
assert "batch_read_feature_values_response" in out
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,7 @@ def import_feature_values_sample(
project: str,
featurestore_id: str,
entity_type_id: str,
avro_source: aiplatform.AvroSource,
feature_specs: list,
avro_gcs_uri: str,
entity_id_field: str,
feature_time_field: str,
worker_count: int = 2,
Expand All @@ -35,6 +34,14 @@ def import_feature_values_sample(
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.FeaturestoreServiceClient(client_options=client_options)
entity_type = f"projects/{project}/locations/{location}/featurestores/{featurestore_id}/entityTypes/{entity_type_id}"
avro_source = aiplatform.AvroSource(
gcs_source=aiplatform.GcsSource(uris=[avro_gcs_uri])
)
feature_specs = [
aiplatform.ImportFeatureValuesRequest.FeatureSpec(id="age"),
aiplatform.ImportFeatureValuesRequest.FeatureSpec(id="gender"),
aiplatform.ImportFeatureValuesRequest.FeatureSpec(id="liked_genres"),
]
import_feature_values_request = aiplatform.ImportFeatureValuesRequest(
entity_type=entity_type,
avro_source=avro_source,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@

import batch_create_features_sample
import create_entity_type_sample
from google.cloud import aiplatform_v1beta1 as aiplatform
import import_feature_values_sample
import pytest

Expand All @@ -35,30 +34,10 @@ def teardown(teardown_entity_type):


def setup_features(featurestore_id, entity_type_id, capsys):
requests = [
{
"feature_id": "age",
"feature": {"value_type": "INT64", "description": "User age"},
},
{
"feature_id": "gender",
"feature": {"value_type": "STRING", "description": "User gender"},
},
{
"feature_id": "liked_genres",
"feature": {
"value_type": "STRING_ARRAY",
"description": "An array of genres that this user liked",
},
},
]
location = "us-central1"
batch_create_features_sample.batch_create_features_sample(
project=PROJECT_ID,
featurestore_id=featurestore_id,
entity_type_id=entity_type_id,
requests=requests,
location=location,
)
out, _ = capsys.readouterr()
assert "batch_create_features_response" in out
Expand All @@ -81,20 +60,11 @@ def test_ucaip_generated_import_feature_values_sample_vision(capsys, shared_stat
entity_type_name = setup_temp_entity_type(featurestore_id, entity_type_id, capsys)
setup_features(featurestore_id, entity_type_id, capsys)

avro_source = aiplatform.AvroSource(
gcs_source=aiplatform.GcsSource(uris=[AVRO_GCS_URI])
)
feature_specs = [
aiplatform.ImportFeatureValuesRequest.FeatureSpec(id="age"),
aiplatform.ImportFeatureValuesRequest.FeatureSpec(id="gender"),
aiplatform.ImportFeatureValuesRequest.FeatureSpec(id="liked_genres"),
]
import_feature_values_sample.import_feature_values_sample(
project=PROJECT_ID,
featurestore_id=featurestore_id,
entity_type_id=entity_type_id,
avro_source=avro_source,
feature_specs=feature_specs,
avro_gcs_uri=AVRO_GCS_URI,
entity_id_field="user_id",
feature_time_field="update_time",
worker_count=2,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@ def read_feature_values_sample(
featurestore_id: str,
entity_type_id: str,
entity_id: str,
feature_selector: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
timeout: int = 300,
Expand All @@ -34,6 +33,9 @@ def read_feature_values_sample(
client_options=client_options
)
entity_type = f"projects/{project}/locations/{location}/featurestores/{featurestore_id}/entityTypes/{entity_type_id}"
feature_selector = aiplatform.FeatureSelector(
id_matcher=aiplatform.IdMatcher(ids=["age", "gender", "liked_genres"])
)
read_feature_values_request = aiplatform.ReadFeatureValuesRequest(
entity_type=entity_type, entity_id=entity_id, feature_selector=feature_selector
)
Expand Down

0 comments on commit 02bbd39

Please sign in to comment.