-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add full integer quantization for SELECT_V2 in Quantizer
PiperOrigin-RevId: 698579890
- Loading branch information
1 parent
230c1fc
commit 18aeb2a
Showing
8 changed files
with
249 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
107 changes: 107 additions & 0 deletions
107
...e_quantizer/algorithms/uniform_quantize/naive_min_max_quantize_op_tests/select_v2_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
# Copyright 2024 The AI Edge Quantizer Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
import os | ||
|
||
from absl.testing import parameterized | ||
import numpy as np | ||
|
||
from tensorflow.python.platform import googletest | ||
from ai_edge_quantizer import qtyping | ||
from ai_edge_quantizer.algorithms.uniform_quantize import naive_min_max_quantize | ||
from ai_edge_quantizer.algorithms.uniform_quantize.naive_min_max_quantize_op_tests import test_utils as naive_min_max_test_utils | ||
from ai_edge_quantizer.utils import test_utils | ||
from ai_edge_quantizer.utils import tfl_flatbuffer_utils | ||
|
||
_TFLOpName = qtyping.TFLOperationName | ||
_ComputePrecision = qtyping.ComputePrecision | ||
_TensorQuantConfig = qtyping.TensorQuantizationConfig | ||
_QuantTransformation = qtyping.QuantTransformation | ||
_OpTestInfo = naive_min_max_test_utils.OpTestInfo | ||
|
||
_TEST_DATA_PREFIX_PATH = test_utils.get_path_to_datafile( | ||
"../../../tests/models" | ||
) | ||
|
||
_DEFAULT_WEIGHT_QUANT_SETTING = ( | ||
naive_min_max_test_utils.DEFAULT_WEIGHT_QUANT_SETTING | ||
) | ||
|
||
|
||
class SelectV2Test(naive_min_max_test_utils.NaiveMinMaxQuantizeTest): | ||
|
||
def setUp(self): | ||
super().setUp() | ||
np.random.seed(666) | ||
self._test_model_path = os.path.join( | ||
_TEST_DATA_PREFIX_PATH, "single_select_v2.tflite" | ||
) | ||
self._op_test_info = _OpTestInfo( | ||
test_model=tfl_flatbuffer_utils.read_model(self._test_model_path), | ||
op_tensor_names={}, | ||
input_range=(np.array([[-10]]), np.array([[10]])), | ||
output_range=(np.array([[-10]]), np.array([[10]])), | ||
) | ||
# The test model has one subgraph for now. | ||
self._graph_info = qtyping.GraphInfo( | ||
subgraph_tensors=self._op_test_info.test_model.subgraphs[0].tensors, | ||
buffers=self._op_test_info.test_model.buffers, | ||
) | ||
|
||
@parameterized.parameters( | ||
8, | ||
16, | ||
) | ||
def test_materialize_select_v2_succeeds(self, num_bits): | ||
activation_tensor_config = _TensorQuantConfig( | ||
num_bits=num_bits, | ||
symmetric=True, | ||
granularity=qtyping.QuantGranularity.TENSORWISE, | ||
) | ||
op_quant_config = qtyping.OpQuantizationConfig( | ||
activation_tensor_config=activation_tensor_config, | ||
weight_tensor_config=_DEFAULT_WEIGHT_QUANT_SETTING, | ||
compute_precision=_ComputePrecision.INTEGER, # SRQ. | ||
) | ||
# Read from Model Explorer. | ||
subgraph0 = self._op_test_info.test_model.subgraphs[0] | ||
subgraph_op_id = 0 | ||
op = subgraph0.operators[subgraph_op_id] | ||
op_info = qtyping.OpInfo( | ||
op=op, | ||
op_name=qtyping.TFLOperationName.SELECT_V2, | ||
subgraph_op_index=subgraph_op_id, | ||
op_quant_config=op_quant_config, | ||
) | ||
|
||
# Test settings. | ||
op_tensor_names = {} | ||
op_tensor_names["input"] = "selectv2_condition_tensor:0" | ||
op_tensor_names["input2"] = "selectv2_t_tensor:0" | ||
op_tensor_names["input3"] = "selectv2_e_tensor:0" | ||
op_tensor_names["output"] = "PartitionedCall:0" | ||
self._op_test_info.op_tensor_names = op_tensor_names | ||
self._test_no_weights_op( | ||
op_info, | ||
self._graph_info, | ||
self._op_test_info, | ||
naive_min_max_quantize.materialize_select_v2, | ||
same_input_output_params=True, | ||
inputs_to_ignore=[0], | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
googletest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
117 changes: 117 additions & 0 deletions
117
ai_edge_quantizer/tests/end_to_end_tests/select_v2_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
# Copyright 2024 The AI Edge Quantizer Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
"""E2E tests for the quantizer for model with slice.""" | ||
|
||
from absl.testing import parameterized | ||
import numpy as np | ||
|
||
from tensorflow.python.platform import googletest | ||
from ai_edge_quantizer import qtyping | ||
from ai_edge_quantizer import quantizer | ||
from ai_edge_quantizer.utils import test_utils | ||
from ai_edge_quantizer.utils import tfl_flatbuffer_utils | ||
|
||
_OpExecutionMode = qtyping.OpExecutionMode | ||
_OpName = qtyping.TFLOperationName | ||
_TensorQuantConfig = qtyping.TensorQuantizationConfig | ||
_OpQuantConfig = qtyping.OpQuantizationConfig | ||
|
||
_RNG = np.random.default_rng(66) | ||
|
||
|
||
def _get_dummy_data(num_samples): | ||
data = [] | ||
for _ in range(num_samples): | ||
data.append({ | ||
'condition_tensor': _RNG.uniform(size=(1, 16)).astype(np.bool), | ||
'e_tensor': _RNG.uniform(size=(1, 16)).astype(np.float32), | ||
't_tensor': _RNG.uniform(size=(1, 16)).astype(np.float32), | ||
}) | ||
return data | ||
|
||
|
||
def _get_calibration_data(num_samples: int = 64): | ||
calibration_samples = _get_dummy_data(num_samples) | ||
calibration_data = {'selectv2': calibration_samples} | ||
return calibration_data | ||
|
||
|
||
def _get_test_data(num_samples: int = 16): | ||
return _get_calibration_data(num_samples) | ||
|
||
|
||
class SelectV2Test(parameterized.TestCase): | ||
|
||
def _custom_setup(self, test_model_file): | ||
super().setUp() | ||
self.float_model_path = test_utils.get_path_to_datafile( | ||
f'../models/{test_model_file}' | ||
) | ||
self._quantizer = quantizer.Quantizer(self.float_model_path) | ||
|
||
@parameterized.parameters( | ||
('../../recipes/default_a8w8_recipe.json', 9), # int8. | ||
('../../recipes/default_a16w8_recipe.json', 7), # int16. | ||
) | ||
def test_select_v2_model_full_integer(self, recipe_path, tensor_type): | ||
self._custom_setup('single_select_v2.tflite') | ||
recipe_path = test_utils.get_path_to_datafile(recipe_path) | ||
self._quantizer.load_quantization_recipe(recipe_path) | ||
self.assertTrue(self._quantizer.need_calibration) | ||
calibration_result = self._quantizer.calibrate(_get_calibration_data()) | ||
quantization_result = self._quantizer.quantize(calibration_result) | ||
|
||
# Check input/output tensor type. | ||
quantized_model = tfl_flatbuffer_utils.read_model( | ||
quantization_result.quantized_model | ||
) | ||
self.assertLen(quantized_model.subgraphs, 1) | ||
subgraph = quantized_model.subgraphs[0] | ||
subgraph_tensors = subgraph.tensors | ||
self.assertLen(subgraph.inputs, 3) | ||
condition_tensor = subgraph_tensors[subgraph.inputs[0]] | ||
e_tensor = subgraph_tensors[subgraph.inputs[1]] | ||
t_tensor = subgraph_tensors[subgraph.inputs[2]] | ||
output_tensor = subgraph_tensors[subgraph.outputs[0]] | ||
# See schema_py_generated.py for type code. | ||
self.assertEqual(condition_tensor.type, 6) # bool. | ||
self.assertEqual(e_tensor.type, tensor_type) | ||
self.assertEqual(t_tensor.type, tensor_type) | ||
self.assertEqual(output_tensor.type, tensor_type) | ||
|
||
comparison_result = self._quantizer.validate( | ||
error_metrics='mse', test_data=_get_test_data() | ||
) | ||
self._check_comparison_result( | ||
comparison_result, | ||
output_tolerance=1e-4, | ||
) | ||
|
||
# TODO: b/345503484 - Check weight tensor type of the quantized model. | ||
def _check_comparison_result( | ||
self, | ||
comparison_result, | ||
output_tolerance, | ||
): | ||
# TODO: b/357959309 - Use comparison result directly for testing. | ||
comparison_result = comparison_result.get_all_tensor_results() | ||
# Check final output. | ||
output_mse = comparison_result['PartitionedCall:0'] | ||
self.assertLess(output_mse, output_tolerance) | ||
|
||
|
||
if __name__ == '__main__': | ||
googletest.main() |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters