Skip to content

Commit

Permalink
implement linear and cubic interpolation windows
Browse files Browse the repository at this point in the history
  • Loading branch information
ntessore committed Jul 30, 2023
1 parent 1d52130 commit 6fe2502
Show file tree
Hide file tree
Showing 2 changed files with 164 additions and 1 deletion.
45 changes: 44 additions & 1 deletion docs/user/how-glass-works.rst
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,6 @@ which are flat and non-overlapping.
plt.fill_between(za, np.zeros_like(wa), wa, alpha=0.5)
plt.annotate(f'shell {i+1}', (zeff, 0.5), ha='center', va='center')

plt.ylim(0., 2.)
plt.xlabel('redshift $z$')
plt.ylabel('window function $W(z)$')
plt.tight_layout()
Expand All @@ -63,6 +62,48 @@ then simulates the (radially) continuous field :math:`F(z)` as the (radially)
discretised fields :math:`F_i`.


.. _user-window-functions:

Window functions
^^^^^^^^^^^^^^^^

*GLASS* supports arbitrary window functions (although the computation of
:ref:`line-of-sight integrals <user-los-integrals>` makes some assumptions).
The following :ref:`window functions <reference-window-functions>` are
included:

.. plot::

from glass.shells import (redshift_grid, tophat_windows, linear_windows,
cubic_windows)

plot_windows = [tophat_windows, linear_windows,
cubic_windows]
nr = (len(plot_windows)+1)//2

fig, axes = plt.subplots(nr, 2, figsize=(8, nr*3), layout="constrained",
squeeze=False, sharex=False, sharey=True)

zs = redshift_grid(0., 0.5, dz=0.1)
zt = np.linspace(0., 0.5, 200)

for ax in axes.flat:
ax.axis(False)
for windows, ax in zip(plot_windows, axes.flat):
ws = windows(zs)
wt = np.zeros_like(zt)
ax.axis(True)
ax.set_title(windows.__name__)
for i, (za, wa, zeff) in enumerate(ws):
wt += np.interp(zt, za, wa, left=0., right=0.)
ax.fill_between(za, np.zeros_like(wa), wa, alpha=0.5)
ax.plot(zt, wt, c="k", lw=2)
for ax in axes.flat:
ax.set_xlabel("redshift $z$")
for ax in axes[:, 0]:
ax.set_ylabel("window function $W(z)$")


Angular discretisation
----------------------

Expand All @@ -89,6 +130,8 @@ difference between the two is whether or not the pixel window function is
applied to the spherical harmonic expansion of the fields.


.. _user-los-integrals:

Line-of-sight integrals
-----------------------

Expand Down
120 changes: 120 additions & 0 deletions glass/shells.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,15 @@
matter shells, i.e. the radial discretisation of the light cone.
.. _reference-window-functions:
Window functions
----------------
.. autoclass:: RadialWindow
.. autofunction:: tophat_windows
.. autofunction:: linear_windows
.. autofunction:: cubic_windows
Window function tools
Expand Down Expand Up @@ -151,6 +155,10 @@ def tophat_windows(zbins: ArrayLike1D, dz: float = 1e-3,
ws : (N,) list of :class:`RadialWindow`
List of window functions.
See Also
--------
:ref:`user-window-functions`
'''
if len(zbins) < 2:
raise ValueError('zbins must have at least two entries')
Expand All @@ -173,6 +181,118 @@ def tophat_windows(zbins: ArrayLike1D, dz: float = 1e-3,
return ws


def linear_windows(zgrid: ArrayLike1D, dz: float = 1e-3,
weight: Optional[WeightFunc] = None,
) -> List[RadialWindow]:
'''Linear interpolation window functions.
Uses the *N+2* given redshifts as nodes to construct *N* triangular
window functions between the first and last node. These correspond
to linear interpolation of radial functions. The redshift spacing
of the windows is approximately equal to ``dz``.
An optional weight function :math:`w(z)` can be given using
``weight``; it is applied to the triangular windows.
The resulting windows functions are :class:`RadialWindow` instances.
Their effective redshifts correspond to the given nodes.
Parameters
----------
zgrid : (N+2,) array_like
Redshift grid for the triangular window functions.
dz : float, optional
Approximate spacing of the redshift grid.
weight : callable, optional
If given, a weight function to be applied to the window
functions.
Returns
-------
ws : (N,) list of :class:`RadialWindow`
List of window functions.
See Also
--------
:ref:`user-window-functions`
'''
if len(zgrid) < 3:
raise ValueError('nodes must have at least 3 entries')
if zgrid[0] != 0:
warnings.warn('first triangular window does not start at z=0')

ws = []
for zmin, zmid, zmax in zip(zgrid, zgrid[1:], zgrid[2:]):
n = max(round((zmid - zmin)/dz), 2) - 1
m = max(round((zmax - zmid)/dz), 2)
z = np.concatenate([np.linspace(zmin, zmid, n, endpoint=False),
np.linspace(zmid, zmax, m)])
w = np.concatenate([np.linspace(0., 1., n, endpoint=False),
np.linspace(1., 0., m)])
if weight is not None:
w *= weight(z)
ws.append(RadialWindow(z, w, zmid))
return ws


def cubic_windows(zgrid: ArrayLike1D, dz: float = 1e-3,
weight: Optional[WeightFunc] = None,
) -> List[RadialWindow]:
'''Cubic interpolation window functions.
Uses the *N+2* given redshifts as nodes to construct *N* cubic
Hermite spline window functions between the first and last node.
These correspond to cubic spline interpolation of radial functions.
The redshift spacing of the windows is approximately equal to
``dz``.
An optional weight function :math:`w(z)` can be given using
``weight``; it is applied to the cubic spline windows.
The resulting windows functions are :class:`RadialWindow` instances.
Their effective redshifts correspond to the given nodes.
Parameters
----------
zgrid : (N+2,) array_like
Redshift grid for the cubic spline window functions.
dz : float, optional
Approximate spacing of the redshift grid.
weight : callable, optional
If given, a weight function to be applied to the window
functions.
Returns
-------
ws : (N,) list of :class:`RadialWindow`
List of window functions.
See Also
--------
:ref:`user-window-functions`
'''
if len(zgrid) < 3:
raise ValueError('nodes must have at least 3 entries')
if zgrid[0] != 0:
warnings.warn('first cubic spline window does not start at z=0')

ws = []
for zmin, zmid, zmax in zip(zgrid, zgrid[1:], zgrid[2:]):
n = max(round((zmid - zmin)/dz), 2) - 1
m = max(round((zmax - zmid)/dz), 2)
z = np.concatenate([np.linspace(zmin, zmid, n, endpoint=False),
np.linspace(zmid, zmax, m)])
u = np.linspace(0., 1., n, endpoint=False)
v = np.linspace(1., 0., m)
w = np.concatenate([u**2*(3-2*u), v**2*(3-2*v)])
if weight is not None:
w *= weight(z)
ws.append(RadialWindow(z, w, zmid))
return ws


def restrict(z: ArrayLike1D, f: ArrayLike1D, w: RadialWindow
) -> Tuple[np.ndarray, np.ndarray]:
'''Restrict a function to a redshift window.
Expand Down

0 comments on commit 6fe2502

Please sign in to comment.