[Documentation] | [Installation] | [Quick Start]
Hypster
is a lightweight configuration system for AI & Machine Learning projects.
It offers minimal, intuitive pythonic syntax, supporting hierarchical and swappable configurations.
You can install Hypster using pip:
pip install hypster
Here's a simple example of how to use Hypster:
from hypster import HP, config
@config
def my_config(hp: HP):
chunking_strategy = hp.select(['paragraph', 'semantic', 'fixed'], default='paragraph')
llm_model = hp.select({'haiku': 'claude-3-haiku-20240307',
'sonnet': 'claude-3-5-sonnet-20240620',
'gpt-4o-mini': 'gpt-4o-mini'}, default='gpt-4o-mini')
llm_config = {'temperature': hp.number(0),
'max_tokens': hp.number(64)}
system_prompt = hp.text('You are a helpful assistant. Answer with one word only')
Now we can instantiate the configs with our values:
results = my_config(final_vars=["chunking_strategy", "llm_config", "llm_model"],
values={"llm_model" : "haiku", "llm_config.temperature" : 0.5})
Hypster draws inspiration from Meta's hydra and hydra-zen framework. The API design is influenced by Optuna's "define-by-run" API.
Contributions are welcome! Please feel free to submit a Pull Request.
This project is licensed under the MIT License - see the LICENSE file for details.